

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7860446/publications.pdf Version: 2024-02-01

		430442	454577
32	942	18	30
papers	citations	h-index	g-index
32	32	32	845
all docs	docs citations	times ranked	citing authors

LINDENC

#	Article	IF	CITATIONS
1	Resveratrol-loaded core-shell nanostructured delivery systems: Cyclodextrin-based metal-organic nanocapsules prepared by ionic gelation. Food Chemistry, 2020, 317, 126328.	4.2	67
2	A review of green techniques for the synthesis of size-controlled starch-based nanoparticles and their applications as nanodelivery systems. Trends in Food Science and Technology, 2019, 92, 138-151.	7.8	66
3	A Dual Cross-Linked Strategy to Construct Moldable Hydrogels with High Stretchability, Good Self-Recovery, and Self-Healing Capability. Journal of Agricultural and Food Chemistry, 2019, 67, 3966-3980.	2.4	65
4	Novel Approach with Controlled Nucleation and Growth for Green Synthesis of Size-Controlled Cyclodextrin-Based Metal–Organic Frameworks Based on Short-Chain Starch Nanoparticles. Journal of Agricultural and Food Chemistry, 2018, 66, 9785-9793.	2.4	58
5	Effects of Degree of Polymerization on Size, Crystal Structure, and Digestibility of Debranched Starch Nanoparticles and Their Enhanced Antioxidant and Antibacterial Activities of Curcumin. ACS Sustainable Chemistry and Engineering, 2019, 7, 8499-8511.	3.2	50
6	Advances in research on interactions between polyphenols and biology-based nano-delivery systems and their applications in improving the bioavailability of polyphenols. Trends in Food Science and Technology, 2021, 116, 492-500.	7.8	48
7	Green Synthesis of Cyclodextrin-Based Metal–Organic Frameworks through the Seed-Mediated Method for the Encapsulation of Hydrophobic Molecules. Journal of Agricultural and Food Chemistry, 2018, 66, 4244-4250.	2.4	46
8	Characterization and Mechanisms of Novel Emulsions and Nanoemulsion Gels Stabilized by Edible Cyclodextrin-Based Metal–Organic Frameworks and Glycyrrhizic Acid. Journal of Agricultural and Food Chemistry, 2019, 67, 391-398.	2.4	46
9	Supramolecular hydrogel formation between chitosan and hydroxypropyl β-cyclodextrin via Diels-Alder reaction and its drug delivery. International Journal of Biological Macromolecules, 2018, 114, 381-391.	3.6	44
10	Advances in research on preparation, characterization, interaction with proteins, digestion and delivery systems of starch-based nanoparticles. International Journal of Biological Macromolecules, 2020, 152, 117-125.	3.6	43
11	Development of nanoscale bioactive delivery systems using sonication: Glycyrrhizic acid-loaded cyclodextrin metal-organic frameworks. Journal of Colloid and Interface Science, 2019, 553, 549-556.	5.0	41
12	Pickering emulsions with enhanced storage stabilities by using hybrid β-cyclodextrin/short linear glucan nanoparticles as stabilizers. Carbohydrate Polymers, 2020, 229, 115418.	5.1	41
13	Resistant starch and its nanoparticles: Recent advances in their green synthesis and application as functional food ingredients and bioactive delivery systems. Trends in Food Science and Technology, 2022, 119, 90-100.	7.8	38
14	Bioactive and functional biodegradable packaging films reinforced with nanoparticles. Journal of Food Engineering, 2022, 312, 110752.	2.7	33
15	Green fabrication and characterization of debranched starch nanoparticles via ultrasonication combined with recrystallization. Ultrasonics Sonochemistry, 2020, 66, 105074.	3.8	27
16	In Situ Self-Assembly of Nanoparticles into Waxberry-Like Starch Microspheres Enhanced the Mechanical Strength, Fatigue Resistance, and Adhesiveness of Hydrogels. ACS Applied Materials & Interfaces, 2020, 12, 46609-46620.	4.0	21
17	Improved art bioactivity by encapsulation within cyclodextrin carboxylate. Food Chemistry, 2022, 384, 132429.	4.2	21
18	Highly branched dextrin prepared from high-amylose maize starch using waxy rice branching enzyme (WRBE). Food Chemistry, 2016, 203, 530-535.	4.2	20

Jinpeng

#	Article	IF	CITATIONS
19	Encapsulation, protection, and delivery of curcumin using succinylated-cyclodextrin systems with strong resistance to environmental and physiological stimuli. Food Chemistry, 2022, 376, 131869.	4.2	19
20	Enhancement of umami taste of hydrolyzed protein from wheat gluten by <i>β</i> yclodextrin. Journal of the Science of Food and Agriculture, 2016, 96, 4499-4504.	1.7	16
21	Simple Strategy Preparing Cyclodextrin Carboxylate as a Highly Effective Carrier for Bioactive Compounds. Journal of Agricultural and Food Chemistry, 2021, 69, 11006-11014.	2.4	15
22	Synthesis and characterization of water-soluble β-cyclodextrin polymers via thiol-maleimide â€~click' chemistry. European Polymer Journal, 2020, 128, 109603.	2.6	14
23	Preparation and Characterization of Ternary Antimicrobial Films of β-Cyclodextrin/Allyl Isothiocyanate/Polylactic Acid for the Enhancement of Long-Term Controlled Release. Materials, 2017, 10, 1210.	1.3	13
24	Acrylated Composite Hydrogel Preparation and Adsorption Kinetics of Methylene Blue. Molecules, 2017, 22, 1824.	1.7	13
25	Ultrasound-assisted self-assembly of β-cyclodextrin/debranched starch nanoparticles as promising carriers of tangeretin. Food Hydrocolloids, 2020, 108, 106021.	5.6	13
26	Preparation and Characterization of Food-Grade Pickering Emulsions Stabilized with Chitosan-Phytic Acid-Cyclodextrin Nanoparticles. Foods, 2022, 11, 450.	1.9	13
27	Immobilized Cells of Bacillus circulans ATCC 21783 on Palm Curtain for Fermentation in 5 L Fermentation Tanks. Molecules, 2018, 23, 2888.	1.7	12
28	Gamma-cyclodextrin on enhancement of water solubility and store stability of nystatin. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2014, 78, 145-150.	0.9	10
29	A review of nanostructured delivery systems for the encapsulation, protection, and delivery of silymarin: An emerging nutraceutical. Food Research International, 2022, 156, 111314.	2.9	9
30	Preparation of Photoirradiation Molecular Imprinting Polymer for Selective Separation of Branched Cyclodextrins. Molecules, 2017, 22, 288.	1.7	8
31	A Novel Cyclodextrin-Functionalized Hybrid Silicon Wastewater Nano-Adsorbent Material and Its Adsorption Properties. Molecules, 2018, 23, 1485.	1.7	6
32	Application of starch-based nanoparticles and cyclodextrin for prebiotics delivery and controlled glucose release in the human gut: a review. Critical Reviews in Food Science and Nutrition, 2023, 63, 6126-6137.	5.4	6