
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7860389/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Downregulation of miR-132 by promoter methylation contributes to pancreatic cancer development. Carcinogenesis, 2011, 32, 1183-1189.	2.8	144
2	Radiation-induced miR-208a increases the proliferation and radioresistance by targeting p21 in human lung cancer cells. Journal of Experimental and Clinical Cancer Research, 2016, 35, 7.	8.6	140
3	Autophagy promotes paclitaxel resistance of cervical cancer cells: involvement of Warburg effect activated hypoxia-induced factor 1-α-mediated signaling. Cell Death and Disease, 2014, 5, e1367-e1367.	6.3	134
4	MicroRNA Profiling of Atrial Fibrillation in Canines: MiR-206 Modulates Intrinsic Cardiac Autonomic Nerve Remodeling by Regulating SOD1. PLoS ONE, 2015, 10, e0122674.	2.5	70
5	Activation of Peroxisome Proliferator-activated Receptor α (PPARα) Suppresses Hypoxia-inducible Factor-1α (HIF-1α) Signaling in Cancer Cells. Journal of Biological Chemistry, 2012, 287, 35161-35169.	3.4	69
6	miR-31 affects colorectal cancer cells by inhibiting autophagy in cancer-associated fibroblasts. Oncotarget, 2016, 7, 79617-79628.	1.8	66
7	Metformin Sensitizes Non-small Cell Lung Cancer Cells to an Epigallocatechin-3-Gallate (EGCG) Treatment by Suppressing the Nrf2/HO-1 Signaling Pathway. International Journal of Biological Sciences, 2017, 13, 1560-1569.	6.4	64
8	Epigallocatechin-3-gallate (EGCG) protects skin cells from ionizing radiation via heme oxygenase-1 (HO-1) overexpression. Journal of Radiation Research, 2014, 55, 1056-1065.	1.6	59
9	Downregulation of ubiquitin inhibits the proliferation and radioresistance of non-small cell lung cancer cells in vitro and in vivo. Scientific Reports, 2015, 5, 9476.	3.3	58
10	The Nrf2/GCH1/BH4 Axis Ameliorates Radiation-Induced Skin Injury by Modulating the ROS Cascade. Journal of Investigative Dermatology, 2017, 137, 2059-2068.	0.7	55
11	Protein and miRNA profiling of radiation-induced skin injury in rats: the protective role of peroxiredoxin-6 against ionizing radiation. Free Radical Biology and Medicine, 2014, 69, 96-107.	2.9	52
12	MiR-21 plays an Important Role in Radiation Induced Carcinogenesis in BALB/c Mice by Directly Targeting the Tumor Suppressor Gene Big-h3. International Journal of Biological Sciences, 2011, 7, 347-363.	6.4	51
13	Hypoxia-inducible factor 1α (HIF-1α) and reactive oxygen species (ROS) mediates radiation-induced invasiveness through the SDF-1α/CXCR4 pathway in non-small cell lung carcinoma cells. Oncotarget, 2015, 6, 10893-10907.	1.8	51
14	Axin2 ⁺ -Mesenchymal PDL Cells, Instead of K14 ⁺ Epithelial Cells, Play a Key Role in Rapid Cementum Growth. Journal of Dental Research, 2019, 98, 1262-1270.	5.2	43
15	HMGB1 may act via RAGE to promote angiogenesis in the later phase after intracerebral hemorrhage. Neuroscience, 2015, 295, 39-47.	2.3	42
16	VEGF-C promotes the development of esophageal cancer via regulating CNTN-1 expression. Cytokine, 2011, 55, 8-17.	3.2	41
17	Activation of PPARα by clofibrate sensitizes pancreatic cancer cells to radiation through the Wnt/l²-catenin pathway. Oncogene, 2018, 37, 953-962.	5.9	41
18	Upregulation of the miR-212/132 cluster suppresses proliferation of human lung cancer cells. Oncology Reports, 2015, 33, 705-712.	2.6	40

#	Article	IF	CITATIONS
19	Upregulation of <scp>Y</scp> ing <scp>Y</scp> ang 1 (<scp>YY</scp> 1) suppresses esophageal squamous cell carcinoma development through heme oxygenaseâ€1. Cancer Science, 2013, 104, 1544-1551.	3.9	39
20	miRNA: The nemesis of gastric cancer (Review). Oncology Letters, 2013, 6, 631-641.	1.8	39
21	Artemisinin derivative artesunate induces radiosensitivity in cervical cancer cells in vitro and in vivo. Radiation Oncology, 2014, 9, 84.	2.7	39
22	LepR-Expressing Stem Cells Are Essential for Alveolar Bone Regeneration. Journal of Dental Research, 2020, 99, 1279-1286.	5.2	37
23	Overexpression of <scp>DNA </scp> <i>polymerase iota</i> (<scp><i>Polι</i></scp>) in esophageal squamous cell carcinoma. Cancer Science, 2012, 103, 1574-1579.	3.9	36
24	High Expression Levels of miR-21 and miR-210 Predict Unfavorable Survival in Breast Cancer: A Systemic Review and Meta-Analysis. International Journal of Biological Markers, 2015, 30, 347-358.	1.8	36
25	The Role of FABP5 in Radiation-Induced Human Skin Fibrosis. Radiation Research, 2017, 189, 177.	1.5	33
26	Downregulation of long nonâ€ʿcoding RNA UCA1 enhances the radiosensitivity and inhibits migration via suppression of epithelialâ€ʿmesenchymal transition in colorectal cancer cells. Oncology Reports, 2018, 40, 1554-1564.	2.6	33
27	Circular RNA profiles in mouse lung tissue induced by radon. Environmental Health and Preventive Medicine, 2017, 22, 36.	3.4	31
28	Tissue Clearing and Its Application to Bone and Dental Tissues. Journal of Dental Research, 2019, 98, 621-631.	5.2	30
29	Integrating microRNA and mRNA expression profiles in response to radiation-induced injury in rat lung. Radiation Oncology, 2014, 9, 111.	2.7	29
30	REV3L modulates cisplatin sensitivity of non-small cell lung cancer H1299 cells. Oncology Reports, 2015, 34, 1460-1468.	2.6	28
31	Adipocytes promote cholangiocarcinoma metastasis through fatty acid binding protein 4. Journal of Experimental and Clinical Cancer Research, 2017, 36, 183.	8.6	28
32	Upregulation of PAX2 Promotes the Metastasis of Esophageal Cancer through Interleukin-5. Cellular Physiology and Biochemistry, 2015, 35, 740-754.	1.6	27
33	DNA polymerase iota (Pol ι) promotes invasion and metastasis of esophageal squamous cell carcinoma. Oncotarget, 2016, 7, 32274-32285.	1.8	27
34	Upregulation of AUF1 is involved in the proliferation of esophageal squamous cell carcinoma through GCH1. International Journal of Oncology, 2016, 49, 2001-2010.	3.3	27
35	Lentiviral DDX46 knockdown inhibits growth and induces apoptosis in human colorectal cancer cells. Gene, 2015, 560, 237-244.	2.2	26
36	Warburg meets non-coding RNAs: the emerging role of ncRNA in regulating the glucose metabolism of cancer cells. Tumor Biology, 2015, 36, 81-94.	1.8	26

#	Article	IF	CITATIONS
37	<scp>REV</scp> 7 confers radioresistance of esophagus squamous cell carcinoma by recruiting <scp>PRDX</scp> 2. Cancer Science, 2019, 110, 962-972.	3.9	26
38	HIV-TAT mediated protein transduction of Cu/Zn-superoxide dismutase-1 (SOD1) protects skin cells from ionizing radiation. Radiation Oncology, 2013, 8, 253.	2.7	25
39	Contactin-1 (CNTN-1) Overexpression is Correlated with Advanced Clinical Stage and Lymph Node Metastasis in Oesophageal Squamous Cell Carcinomas. Japanese Journal of Clinical Oncology, 2012, 42, 612-618.	1.3	24
40	REV3L, the catalytic subunit of DNA polymerase ζ, is involved in the progression and chemoresistance of esophageal squamous cell carcinoma. Oncology Reports, 2016, 35, 1664-1670.	2.6	24
41	Overexpression of Peroxiredoxin 6 (PRDX6) Promotes the Aggressive Phenotypes of Esophageal Squamous Cell Carcinoma. Journal of Cancer, 2018, 9, 3939-3949.	2.5	24
42	lonizing radiation induces cutaneous lipid remolding and skin adipocytes confer protection against radiation-induced skin injury. Journal of Dermatological Science, 2020, 97, 152-160.	1.9	24
43	Amelioration of radiation-induced skin injury by adenovirus-mediated heme oxygenase-1 (HO-1) overexpression in rats. Radiation Oncology, 2012, 7, 4.	2.7	23
44	Genome-Wide Analysis Reveals Zinc Transporter ZIP9 Regulated by DNA Methylation Promotes Radiation-Induced Skin Fibrosis via the TGF-β Signaling Pathway. Journal of Investigative Dermatology, 2020, 140, 94-102.e7.	0.7	22
45	Prevention and treatment for radiation-induced skin injury during radiotherapy. Radiation Medicine and Protection, 2020, 1, 60-68.	0.8	22
46	A novel role of long non-coding RNAs in response to X-ray irradiation. Toxicology in Vitro, 2015, 30, 536-544.	2.4	20
47	Proteomic Profiling of Radiation-Induced SkinÂFibrosis in Rats: Targeting the Ubiquitin-Proteasome System. International Journal of Radiation Oncology Biology Physics, 2016, 95, 751-760.	0.8	19
48	The superoxide dismutase 1 3′UTR maintains high expression of the SOD1 gene in cancer cells: The involvement of the RNA-binding protein AUF-1. Free Radical Biology and Medicine, 2015, 85, 33-44.	2.9	18
49	Expression of YY1 correlates with progression and metastasis in esophageal squamous cell carcinomas. OncoTargets and Therapy, 2014, 7, 1753.	2.0	17
50	The shorter zinc finger protein ZNF230 gene message is transcribed in fertile male testes and may be related to human spermatogenesis. Biochemical Journal, 2001, 359, 721.	3.7	16
51	The Critical Role of Tetrahydrobiopterin (BH4) Metabolism in Modulating Radiosensitivity: BH4/NOS Axis as an Angel or a Devil. Frontiers in Oncology, 2021, 11, 720632.	2.8	16
52	Overexpression of CD9 correlates with tumor stage and lymph node metastasis in esophageal squamous cell carcinoma. International Journal of Clinical and Experimental Pathology, 2015, 8, 3054-61.	0.5	16
53	PPARα Activation Sensitizes Cancer Cells to Epigallocatechin-3-Gallate (EGCG) Treatment via Suppressing Heme Oxygenase-1. Nutrition and Cancer, 2014, 66, 315-324.	2.0	15
54	Proteasome inhibitor MG132 enhances the antigrowth and antimetastasis effects of radiation in human nonsmall cell lung cancer cells. Tumor Biology, 2014, 35, 7531-7539.	1.8	15

#	Article	IF	CITATIONS
55	A Novel Role of Cab45-G in Mediating Cell Migration in Cancer Cells. International Journal of Biological Sciences, 2016, 12, 677-687.	6.4	15
56	Efficacy of Epigallocatechin-3-Gallate in Preventing Dermatitis in Patients With Breast Cancer Receiving Postoperative Radiotherapy. JAMA Dermatology, 2022, 158, 779.	4.1	15
57	Metabolomic Analysis of Radiation-Induced Lung Injury in Rats: The Potential Radioprotective Role of Taurine. Dose-Response, 2019, 17, 155932581988347.	1.6	14
58	Interferon-α inducible protein 6 (IFI6) confers protection against ionizing radiation in skin cells. Journal of Dermatological Science, 2020, 100, 139-147.	1.9	13
59	miR-132/212 cluster inhibits the growth of lung cancer xenografts in nude mice. International Journal of Clinical and Experimental Medicine, 2014, 7, 4115-22.	1.3	12
60	A Novel Method for Identifying Shahtoosh. Journal of Forensic Sciences, 2014, 59, 723-728.	1.6	11
61	Effect of estrogen deficiency on the fixation of titanium implants in chronic kidney disease mice. Osteoporosis International, 2015, 26, 1073-1080.	3.1	11
62	<i>Deinococcus radiodurans pprl</i> expression enhances the radioresistance of eukaryotes. Oncotarget, 2016, 7, 15339-15355.	1.8	11
63	The Involvement of SDF-11 \pm /CXCR4 Axis in Radiation-Induced Acute Injury and Fibrosis of Skin. Radiation Research, 2019, 192, 410.	1.5	11
64	mRNA and IncRNA Expression Profiling of Radiation-Induced Gastric Injury Reveals Potential Radiation-Responsive Transcription Factors. Dose-Response, 2019, 17, 155932581988676.	1.6	11
65	Typical tumor immune microenvironment status determine prognosis in lung adenocarcinoma. Translational Oncology, 2022, 18, 101367.	3.7	10
66	MG132 enhances the radiosensitivity of lung cancer cells in vitro and in vivo. Oncology Reports, 2015, 34, 2083-2089.	2.6	9
67	Effects of radon on miR-34a–induced apoptosis in human bronchial epithelial BEAS-2B cells. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2019, 82, 913-919.	2.3	9
68	The protein Pprl provides protection against radiation injury in human and mouse cells. Scientific Reports, 2016, 6, 26664.	3.3	8
69	Neurogenic differentiation factor NeuroD confers protection against radiation-induced intestinal injury in mice. Scientific Reports, 2016, 6, 30180.	3.3	8
70	Methylation-induced silencing of maspin contributes to the proliferation of human glioma cells. Oncology Reports, 2016, 36, 57-64.	2.6	6
71	Advances in targeting the transforming growth factor $\hat{1}^21$ signaling pathway in lung cancer radiotherapy (Review). Oncology Letters, 2017, 14, 5681-5687.	1.8	6
72	Evaluation of Epigallocatechin-3-Gallate as a Radioprotective Agent During Radiotherapy of Lung Cancer Patients: A 5-Year Survival Analysis of a Phase 2 Study. Frontiers in Oncology, 2021, 11, 686950.	2.8	6

#	Article	IF	CITATIONS
73	The Application of a Jigsaw Puzzle Flap Based on a Freestyle Perforator and an Aesthetic Unit for Large Facial Defects. Journal of Craniofacial Surgery, 2019, 30, 1529-1532.	0.7	5
74	Association of rs5888 SNP in SCARB1 gene with coronary artery disease. Herz, 2019, 44, 644-650.	1.1	5
75	PPARα activation by fenofibrate ameliorates radiationâ€induced skin injury. Journal of the European Academy of Dermatology and Venereology, 2022, 36, .	2.4	5
76	Amelioration of Radiation-induced Skin Injury by HIV-TAT-Mediated Protein Transduction of RP-1 from <i>Rana pleurade</i> . International Journal of Medical Sciences, 2014, 11, 44-51.	2.5	4
77	Proteomic Analysis of Radiation-Induced Acute Liver Damage in a Rabbit Model. Dose-Response, 2019, 17, 155932581988950.	1.6	4
78	Role of AUF1 in modulating the proliferation, migration and senescence of skin cells. Experimental and Therapeutic Medicine, 2021, 23, 45.	1.8	4
79	Metabolic Profiling Implicates a Critical Role of Cyclooxygenase-2-Mediated Arachidonic Acid Metabolism in Radiation-Induced Esophageal Injury in Rats. Radiation Research, 2022, , .	1.5	4
80	Additional Evidence for Commonalities between COVID-19 and Radiation Injury: Novel Insight into COVID-19 Candidate Drugs. Radiation Research, 2022, 198, .	1.5	4
81	Downregulation of Ubiquitin Inhibits the Aggressive Phenotypes of Esophageal Squamous Cell Carcinoma. Technology in Cancer Research and Treatment, 2020, 19, 153303382097328.	1.9	3
82	Serum Metabolomic Analysis of Radiation-Induced Lung Injury in Rats. Dose-Response, 2022, 20, 155932582110670.	1.6	3
83	Technical note: A protein analysis-based method for identifying shahtoosh. Forensic Science International, 2022, 336, 111341.	2.2	3
84	Effect of specific silencing of EMMPRIN on the growth and cell cycle distribution of MCF-7 breast cancer cells. Genetics and Molecular Research, 2015, 14, 15730-15738.	0.2	2
85	Alteration of Metal Elements in Radiation Injury: Radiation-Induced Copper Accumulation Aggravates Intestinal Damage. Dose-Response, 2020, 18, 155932582090454.	1.6	2
86	Tuberculosis vs. chronic lymphocytic leukaemia in mediastinal lymph nodes using computed tomography. International Journal of Tuberculosis and Lung Disease, 2014, 18, 211-215.	1.2	1
87	The application of a modified random flap in breast cancer patients after surgery and radiation. Asian Journal of Surgery, 2020, 43, 513-516.	0.4	1
88	Alteration of Metal Elements in Radiation Injury: Radiation-Induced Copper Accumulation Aggravates Intestinal Damage. Dose-Response, 2020, 18, 1559325820904547.	1.6	1
89	Proteomic and miRNA profiling of radon-induced skin damage in mice: FASN regulated by miRNAs. Journal of Radiation Research, 0, , .	1.6	1
90	EGFR-mediated DSB repair pathway in radiosensitization of rectal cancer. , 2012, , .		0

#	Article	IF	CITATIONS
91	OP0147â€Aberrant activation of type i interferon system in anti-mda5 dermatomyositis patients. , 2018, , .		Ο
92	RXRα agonist bexarotene attenuates radiation-induced skin injury by relieving oxidative stress. Radiation Medicine and Protection, 2022, , .	0.8	0