List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7860338/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Primary Amine Catalyzed Activation of Carbonyl Compounds: A Study on Reaction Pathways and Reactive Intermediates by Mass Spectrometry. European Journal of Organic Chemistry, 2022, 2022, .	1.2	3
2	Noncovalent Interactions between Stacked Arenes in 1,8â€Bisâ€(1â€naphthyl)â€naphthalenes. European Journal of Organic Chemistry, 2021, 2021, 2594-2603.	1.2	3
3	Computational Investigation on the Origin of Atroposelectivity for the Cinchona Alkaloid Primary Amine-Catalyzed Vinylogous Desymmetrization of N-(2-t-Butylphenyl)maleimides. Journal of Organic Chemistry, 2021, 86, 11782-11793.	1.7	2
4	Direct Access to Alkylideneoxindoles via Axially Enantioselective Knoevenagel Condensation. Organic Letters, 2019, 21, 3013-3017.	2.4	21
5	Asymmetric vinylogous aldol addition of alkylidene oxindoles on trifluoromethyl-α,β-unsaturated ketones. RSC Advances, 2018, 8, 33451-33458.	1.7	14
6	Enantioselective Synthesis of Trifluoromethyl Î \pm ,β-Unsaturated δ-Lactones via Vinylogous Aldol-Lactonization Cascade. Journal of Organic Chemistry, 2018, 83, 12440-12448.	1.7	23
7	A Twoâ€Step Process for the Synthesis of Hydroxytyrosol. ChemSusChem, 2018, 11, 2202-2210.	3.6	15
8	Betti's base for crystallization-induced deracemization of substituted aldehydes: synthesis of enantiopure amorolfine and fenpropimorph. Organic and Biomolecular Chemistry, 2017, 15, 2968-2978.	1.5	8
9	Michael Addition of Oxindoles to N-(2-tert-Butylphenyl)maleimides: Efficient Desymmetrization for the Synthesis of Atropisomeric Succinimides with Quaternary and Tertiary Stereocenters. Synthesis, 2017, 49, 1519-1530.	1.2	22
10	Controlling the C(sp3)–C(sp2) Axial Conformation in the Enantioselective Friedel–Crafts-Type Alkylation of β-Naphthols with Inden-1-ones. Organic Letters, 2017, 19, 6692-6695.	2.4	23
11	Targeting remote axial chirality control of N-(2-tert-butylphenyl)succinimides by means of Michael addition type reactions. Tetrahedron, 2016, 72, 5191-5201.	1.0	32
12	Synthesis and Preliminary Results on the Catalytic Activity of Metal Complexes obtained from <i>C</i> ₂ -Symmetric Ligands Derived from <i>R</i> -(+)-Betti base. ChemistrySelect, 2016, 1, 2624-2629.	0.7	5
13	A greener procedure for the synthesis of [Bu ₄ N] ₂ -cis-[Ru(4-carboxy-4′-carboxylate-2,2′-bipyridine) ₂ (NCS) <sul (N719), a benchmark dye for DSSC applications. RSC Advances, 2016, 6, 55768-55777.</sul 	⊃ 1 2/sub>	•]2
14	Enantioselective Preparation, Conformational Analysis and Absolute Configuration of Highly Substituted Aziridines. Chirality, 2015, 27, 875-887.	1.3	4
15	Revising the Role of a Dioxirane as an Intermediate in the Uncatalyzed Hydroperoxidation of Cyclohexanone in Water. Journal of Organic Chemistry, 2015, 80, 6425-6431.	1.7	11
16	Vinylogous Reactivity of Oxindoles Bearing Nonsymmetric 3-Alkylidene Groups. Journal of Organic Chemistry, 2015, 80, 7158-7171.	1.7	30
17	Organocatalytic Atroposelective Formal Diels–Alder Desymmetrization of <i>N</i> -Arylmaleimides. Organic Letters, 2015, 17, 1728-1731.	2.4	51
18	Towards a more sustainable production of triacetoneamine with heterogeneous catalysis. Journal of Molecular Catalysis A, 2014, 393, 325-332.	4.8	3

#	Article	IF	CITATIONS
19	Carbonates as reactants for the production of fine chemicals: the synthesis of 2-phenoxyethanol. Catalysis Science and Technology, 2014, 4, 4386-4395.	2.1	17
20	Deracemization and Transacetalization of Aldehydes with Enantiomers of Betti's Base Derivatives. Synthetic Communications, 2014, 44, 3450-3455.	1.1	5
21	Remote Control of Axial Chirality: Aminocatalytic Desymmetrization of <i>N</i> -Arylmaleimides via Vinylogous Michael Addition. Journal of the American Chemical Society, 2014, 136, 10250-10253.	6.6	134
22	Two alternative routes for 1,2-cyclohexanediol synthesis by means of green processes: Cyclohexene dihydroxylation and catechol hydrogenation. Applied Catalysis A: General, 2013, 466, 21-31.	2.2	24
23	Oxidation of 1,2â€Cyclohexanediol to Adipic Acid with Oxygen: A Study Into Selectivityâ€Affecting Parameters. ChemCatChem, 2013, 5, 1998-2008.	1.8	30
24	lminium ion catalysis: the enantioselective Friedel–Crafts alkylation–acetalization cascade of naphthols with α,β-unsaturated cyclic ketones. Chemical Communications, 2012, 48, 11178.	2.2	49
25	Enantioselective α-Benzoyloxylation of Ketones Promoted by Primary Amine Catalyst. Journal of Organic Chemistry, 2012, 77, 2667-2674.	1.7	55
26	Regioselective synthesis of 1,3,5- and 1,3,4,5-substituted pyrazoles via acylation of N-Boc-N-substituted hydrazones. Tetrahedron, 2011, 67, 612-617.	1.0	11
27	<i>Cinchona</i> Alkaloidâ€Catalyzed Enantioselective Direct Aldol Reaction of <i>N</i> â€Bocâ€Oxindoles with Polymeric Ethyl Glyoxylate. Advanced Synthesis and Catalysis, 2011, 353, 2953-2959.	2.1	14
28	Organocatalytic Michael–Alkylation Cascade: The Enantioselective Nitrocyclopropanation of Oxindoles. Chemistry - A European Journal, 2011, 17, 2842-2845.	1.7	139
29	Domino Processes as a Tool for Recovering Substandard Reactions. Synthesis and Use of Nitroacetic Acid Esters and Amides ChemInform, 2010, 33, 127-127.	0.1	0
30	Acid promoted CIDT for the deracemization of dihydrocinnamic aldehydes with Betti's base. Green Chemistry, 2010, 12, 1747.	4.6	13
31	Crystal forms of rifaximin and their effect on pharmaceutical properties. CrystEngComm, 2008, 10, 1074.	1.3	45
32	Comparative assessment of an alternative route to (5-benzylfuran-3-yl)methanol (Elliott's alcohol), a key intermediate for the industrial production of resmethrins. Green Chemistry, 2008, 10, 1146.	4.6	22
33	Synthesis of 1-Oxo-1-(3-pyridazinyl) Derivatives - Potent Inhibitors of Fatty Acid Amide Hydrolase (FAAH): An Improved and Optimized Procedure. Synthesis, 2007, 2007, 3051-3055.	1.2	4
34	The racemate cage. Influence of p1,n1 salt occurrence on enantiomer separation processes. The case of trans-chrysanthemic acid. Chemical Communications, 2007, , 2717.	2.2	5
35	The same and not the same. Similarities and differences in the resolution of trans-chrysanthemic acid of industrial origin by the enantiomers of some threo-1-aryl-2-dimethylamino-1,3-propanediols. Green Chemistry, 2007, 9, 441.	4.6	9
36	Highly efficient one- or two-step sequences for the synthesis of fine chemicals from versatile nitroalkanes. Tetrahedron, 2007, 63, 12099-12121.	1.0	69

#	Article	IF	CITATIONS
37	Iodocyclization/base-induced hydrodeiodination reaction of 5-substituted 4-alkenols. The influence of substituent onÂtheÂstereoselective pathway. Tetrahedron, 2007, 63, 12763-12768.	1.0	7
38	p1,n1 Salts: self-assembled supramolecular structures sequestering racemates. Diastereomeric separation and enantiomeric enrichment of trans-chrysanthemic acid. Chemical Communications, 2006, , 4294.	2.2	6
39	Protection (and Deprotection) of Functional Groups in Organic Synthesis by Heterogeneous Catalysis. ChemInform, 2004, 35, no.	0.1	0
40	Preparation of Bicyclo[3.2.0]heptane-2-endo,7-endo-diols: 1,3-Diols with a Chiral Rigid Backbone ChemInform, 2004, 35, no.	0.1	0
41	Preparation of Bicyclo[3.2.0]heptane-2-endo,7-endo-diols: 1,3-Diols with a Chiral Rigid Backboneâ€. Journal of Organic Chemistry, 2004, 69, 1353-1356.	1.7	10
42	Protection (and Deprotection) of Functional Groups in Organic Synthesis by Heterogeneous Catalysis. Chemical Reviews, 2004, 104, 199-250.	23.0	403
43	MCM-41-TBD as a New, Efficient, Supported Heterogeneous Catalyst for the Synthesis of Thioureas ChemInform, 2003, 34, no.	0.1	0
44	CeCl3×7H2O—Nal Catalyzed Hydrooxacyclization of Unsaturated 3-Hydroxy Esters ChemInform, 2003, 34, no.	0.1	0
45	TBD-catalysed solventless synthesis of symmetrically N,N′-substituted ureas from primary amines and diethyl carbonate. Green Chemistry, 2003, 5, 396-398.	4.6	49
46	Nitroalkanes and Dimethyl Maleate as Source of 3-Alkyl Succinic Anhydrides and (E)-3-Alkylidene Succinic Anhydrides. Synthesis, 2002, 2002, 681-685.	1.2	21
47	Domino Processes as a Tool for Recovering Substandard Reactions. Synthesis and Use of Nitroacetic Acid Esters and Amides. Organic Letters, 2002, 4, 965-968.	2.4	24
48	Solution- and Solid-Phase Synthesis of 4-Hydroxy-4,5-dihydroisoxazole Derivatives from Enantiomerically PureN-Tosyl-2,3-aziridine Alcohols. Organic Letters, 2002, 4, 497-500.	2.4	42
49	Reaction of Allylzinc Reagents and Zinc Enolates of Ketones with α-Amidoalkylphenyl Sulfones. Journal of Organic Chemistry, 2002, 67, 4530-4535.	1.7	44
50	CeCl3·7H2Oâ^'Nal Catalyzed Hydrooxacyclization of Unsaturated 3-Hydroxy Esters. Organic Letters, 2002, 4, 4451-4453.	2.4	49
51	MCM-41-TBD as a new, efficient, supported heterogeneous catalyst for the synthesis of thioureas. Tetrahedron Letters, 2002, 43, 8445-8447.	0.7	26
52	Clay-catalysed solventless synthesis of trans-chalcones. Green Chemistry, 2001, 3, 178-180.	4.6	61
53	One-Pot Direct Conversion of 2,3-Epoxy Alcohols into Enantiomerically Pure 4-Hydroxy-4,5-dihydroisoxazole 2-Oxides. Organic Letters, 2001, 3, 727-729.	2.4	64
54	Supported organic catalysts: synthesis of (E)-nitrostyrenes from nitroalkanes and aromatic aldehydes over propylamine supported on MCM-41 silica as a reusable catalyst. Tetrahedron Letters, 2001, 42, 2401-2403.	0.7	104

#	Article	IF	CITATIONS
55	Three-component process for the synthesis of 2-amino-2-chromenes in aqueous media. Tetrahedron, 2001, 57, 1395-1398.	1.0	165
56	Amberlyst® 15 as a Mild, Chemoselective and Reusable Heterogeneous Catalyst for the Conversion of Carbonyl Compounds to 1,3-Oxathiolanes. Synthesis, 2001, 2001, 1826-1829.	1.2	18
57	A Bicyclo[3.2.0]hept-3-en-6-one Approach to Prostaglandin Intermediates. Organic Letters, 2000, 2, 4145-4148.	2.4	18
58	Nitroalkanes as a new source of 2-alkylidene-1,4-diols, in two steps. Tetrahedron, 1999, 55, 13451-13456.	1.0	16
59	Medium sized lactones with hypolipidaemic and antioxidant activity: synthesis and biological evaluation of promising dual-action anti-atherosclerosis drugs. Bioorganic and Medicinal Chemistry, 1999, 7, 411-418.	1.4	6
60	The Bicyclo[3.2.0]heptan-endo-2-ol and Bicyclo[3.2.0]hept-3-en-6-one Approaches in the Synthesis of Grandisol:Â The Evolution of an Idea and Efforts to Improve Versatility and Practicality. Organic Process Research and Development, 1999, 3, 206-219.	1.3	12
61	Linear Aminopolyhydroxylated Structures Through Rapid Domino Assembly of a Highly Functionalized Heterotricyclic System and Its Selective Cleavage. Chemistry - A European Journal, 1998, 4, 2501-2512.	1.7	19
62	Consecutive and domino processes for the synthesis of a heavily functionalised tricyclic system. Tetrahedron Letters, 1998, 39, 1041-1044.	0.7	18
63	Total Synthesis of the Marine Sesquiterpenoid Raikovenal through a Novel Utilization of the Bicyclo[3.2.0]heptenone Approach. Journal of Organic Chemistry, 1998, 63, 2389-2391.	1.7	21
64	d-Mannitol as the Chiral Source for the EPC Synthesis of Both Enantiomers of 3-Ethoxycarbonyl-4-hydroxy-2-isoxazolines and Highly Functionalized Tricyclic Systems. Journal of Organic Chemistry, 1998, 63, 8235-8246.	1.7	32
65	Silicon-Tethered 1,3-Dipolar Cycloaddition of 4-Hydroxy-2-isoxazoline 2-Oxides. Journal of the American Chemical Society, 1996, 118, 9446-9447.	6.6	45
66	Enantiomerically Pure 4-Methyl- and 1,4-Dimethyl-bicyclo[3.2.0]hept-3-en-6-ols and Ones by Microbial Redox. Chemistry Letters, 1996, 25, 511-512.	0.7	5
67	Microbial reduction of methyl-substituted bicyclo[3.2.0]hept-3-en-6-ones : a screening to homochiral endo- and exo-alcohols. Tetrahedron: Asymmetry, 1996, 7, 277-282.	1.8	14
68	Pure enantiomers of bicyclo[3.2.0]hept-3-en-6-ones and bicyclo[3.2.0]hept-3-en-6-endo-ols: Resolution, absolute configuration and optical properties. Tetrahedron: Asymmetry, 1995, 6, 2319-2328.	1.8	11
69	Synthesis of 5-Acyl-3-(ethoxycarbonyl)-2-isoxazolines 2-Oxides by a Tandem Conjugate Addition-Ring Closure of Ethyl Nitroacetate with .alphaBromo Enones. Journal of Organic Chemistry, 1995, 60, 6624-6626.	1.7	28
70	Synthesis of methyl substituted bicyclo[3.2.0]hept-3-en-6-ones and 3,3a,4,6a-tetrahydro-2H-cyclopenta[b]furan-2-ones Tetrahedron, 1994, 50, 7645-7656.	1.0	20
71	A new, effective route to methyl substituted 3,3a,4,6a-tetrahydro-2H-cyclopenta[b]furan-2-ones. Tetrahedron Letters, 1994, 35, 2949-2950.	0.7	9
72	Practical preparation of bicyclo[3.2.0]hept-3-en-6-ones and its utilisation in stereoselective total synthesis of grandisol and lineatin via a versatile intermediate Tetrahedron, 1994, 50, 3235-3250.	1.0	37

#	Article	IF	CITATIONS
73	The Conversion of 3-Hydroxy-6-heptenoic Acids into Bicyclo[3.2.0]hept-3-en-6-ones. Journal of Organic Chemistry, 1994, 59, 7529-7531.	1.7	15
74	N-Bromosuccinimide-Induced Lactonization of Bicyclo[3.2.0]hept-3-en-6-ones. Journal of Organic Chemistry, 1994, 59, 7526-7528.	1.7	12
75	A practical preparation of pure enantiomers of endo-bicyclo[3.3.0]oct-7-en-2-ol, versatile intermediate for the synthesis of natural products Tetrahedron: Asymmetry, 1993, 4, 735-742.	1.8	8
76	Stereocontrolled synthesis of 3-(ethoxycarbonyl)-4-hydroxy-2-isoxazoline-2-oxides. A new approach to the synthesis of 4-hydroxylated 2-isoxazolines. Journal of Organic Chemistry, 1991, 56, 6258-6260.	1.7	41
77	Resolution and EPC synthesis of both enantiomers of 2,5-Dimethylbicyclo[3.2.0]heptan-endo-2-ol, Key Intermediate in the Synthesis of Grandisol Tetrahedron: Asymmetry, 1991, 2, 123-138.	1.8	29
78	Stereoselective synthesis of 3-(ethoxycarbonyl)-4-hydroxy-5-(1-hydroxyalkyl)-2-isoxazoline 2-oxides by reaction of 2,3-epoxy aldehydes and ethyl nitroacetate on alumina surface. Journal of Organic Chemistry, 1990, 55, 781-783.	1.7	72
79	RECENT PROGRESS IN THE SYNTHESIS AND REACTIVITY OF NITROKETONES. A REVIEW. Organic Preparations and Procedures International, 1990, 22, 707-746.	0.6	56