
Iwona Ledwożyw-SmoleÅ"

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7860271/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SelectedAspects of Iodate and Iodosalicylate Metabolism in Lettuce Including the Activity of Vanadium Dependent Haloperoxidases as Affected by Exogenous Vanadium. Agronomy, 2020, 10, 1.	3.0	101
2	Biofortification of Carrot (Daucus carota L.) with Iodine and Selenium in a Field Experiment. Frontiers in Plant Science, 2016, 7, 730.	3.6	50
3	The role of exogenous humic and fulvic acids in iodine biofortification in spinach (Spinacia oleracea) Tj ETQq1	0.784314	rgBT /Overlo
4	Combined biofortification of carrot with iodine and selenium. Food Chemistry, 2019, 300, 125202.	8.2	38
5	Quality of fresh and stored carrots depending on iodine and nitrogen fertilization. Food Chemistry, 2014, 159, 316-322.	8.2	27
6	Antioxidants and Health-Beneficial Nutrients in Fruits of Eighteen Cucurbita Cultivars: Analysis of Diversity and Dietary Implications. Molecules, 2020, 25, 1792.	3.8	27
7	Antioxidant properties of fruits of raspberry and blackberry grown in central Europe. Open Chemistry, 2015, 13, .	1.9	19
8	Effect of lettuce biofortified with iodine by soil fertilization on iodine concentration in various tissues and selected biochemical parameters in serum of Wistar rats. Journal of Functional Foods, 2015, 14, 479-486.	3.4	19
9	Comparison of Effects of Potassium Iodide and Iodosalicylates on the Antioxidant Potential and Iodine Accumulation in Young Tomato Plants. Journal of Plant Growth Regulation, 2020, 39, 282-295.	5.1	19
10	The Impact of Carrot Enriched in Iodine through Soil Fertilization on Iodine Concentration and Selected Biochemical Parameters in Wistar Rats. PLoS ONE, 2016, 11, e0152680.	2.5	18
11	The absorption of iodine from 5-iodosalicylic acid by hydroponically grown lettuce. Scientia Horticulturae, 2017, 225, 716-725.	3.6	17
12	Organic iodine supply affects tomato plants differently than inorganic iodine. Physiologia Plantarum, 2018, 164, 290-306.	5.2	16
13	Transcriptome Profiling of Caco-2 Cancer Cell Line following Treatment with Extracts from Iodine-Biofortified Lettuce (Lactuca sativa L.). PLoS ONE, 2016, 11, e0147336.	2.5	14
14	lodine Biofortification of Potato (Solanum tuberosum L.) Grown in Field. Agronomy, 2020, 10, 1916.	3.0	13
15	Preliminary evaluation of the influence of soil fertilization and foliar nutrition with iodine on the efficiency of iodine biofortification and chemical composition of lettuce. Journal of Elementology, 2011, , .	0.2	13
16	Preliminary evaluation of the influence of iodine and nitrogen fertilization on the effectiveness of iodine biofortification and mineral composition of carrot storage roots. Journal of Elementology, 2011, , .	0.2	11
17	lodine biofortification of spinach by soil fertigation with additional application of humic and fulvic acids. New Zealand Journal of Crop and Horticultural Science, 2017, 45, 233-250.	1.3	9
18	lodosalicylates and iodobenzoates supplied to tomato plants affect the antioxidative and sugar metabolism differently than potassium iodide. Folia Horticulturae, 2019, 31, 385-400.	1.8	7

#	Article	IF	CITATIONS
19	The quality of carrot (Daucus carota L.) cultivated in the field depending on iodine and selenium fertilization. Folia Horticulturae, 2016, 28, 151-164.	1.8	5
20	Antioxidant potential and iodine accumulation in tomato (<i>Solanum lycopersicum</i> L.) seedlings as the effect of the application of three different iodobenzoates. Folia Horticulturae, 2020, 32, 203-219.	1.8	3
21	ANTIOXIDANT POTENTIAL OF TOMATO (SOLANUM LYCOPERSICUM L.) SEEDLINGS AS AFFECTED BY THE EXOGENOUS APPLICATION OF ORGANOIODINE COMPOUNDS. Acta Scientiarum Polonorum, Hortorum Cultus, 2020, 19, 3-15.	0.6	1