Vadim D Romanenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/785986/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fluorinated Phosphonates:Â Synthesis and Biomedical Application. Chemical Reviews, 2006, 106, 3868-3935.	47.7	332
2	Phosphaalkynes and phosphaalkenes. Tetrahedron, 1989, 45, 6019-6090.	1.9	152
3	Stable Versions of Transient Push-Pull Carbenes: Extending Lifetimes from Nanoseconds to Weeks. Science, 2000, 288, 834-836.	12.6	136
4	Mono- and Diaminocarbenes from Chloroiminium and -amidinium Salts:  Synthesis of Metal-Free Bis(dimethylamino)carbene. Journal of the American Chemical Society, 2004, 126, 1016-1017.	13.7	112
5	Synthesis and structure of 1,2,4-triazol-2-ium-5-ylidene complexes of Hg(II), Pd(II), Ni(II), Ni(O), Rh(I) and Ir(I). Journal of Organometallic Chemistry, 2002, 664, 70-76.	1.8	64
6	A new synthesis of 1-phosphaalkyne via phosphaalkene with palladium(O) complex. Tetrahedron Letters, 1992, 33, 2981-2982.	1.4	46
7	Application of Silicon-based Methodologies for the Synthesis of Functionalized Mono- and Bisphosphonic Acids. Current Organic Chemistry, 2011, 15, 2774-2801.	1.6	44
8	1-Amino-1,1-bisphosphonates. Fundamental syntheses and new developments. Arkivoc, 2012, 2012, 127-166.	0.5	35
9	Synthesis and structural characterization of the first donor-stabilized phosphanetriylphosphonium cation: [Ar*PP(PPh3)]+(Ar*= 2,4,6-But 3C6H2). Journal of the Chemical Society Chemical Communications, 1995, , 1383.	2.0	29
10	Fluorinated organophosphates for biomedical targets. Tetrahedron, 2008, 64, 6153-6190.	1.9	28
11	Persistent Phosphinyl Radicals Featuring a Bulky Amino Substituent and the 2,6-Bis(trifluoromethyl)phenyl Group. Inorganic Chemistry, 2004, 43, 6546-6548.	4.0	25
12	The First "Naked―Primary Phosphanide Anion [ArPH]â^'. Angewandte Chemie - International Edition, 2002, 41, 1193-1195.	13.8	21
13	Synthesis and reactivity of a stable crystalline diastereomerically pure trifluoromethanesulfinic acid derivative: (S)-(â´')-1-trifluoromethylsulfinyl-(R)-4-phenyloxazolidin-2-one. Chemical Communications, 2003, , 1680-1681.	4.1	21
14	Silicon–mercury derivatives in organic synthesis. Tetrahedron, 2005, 61, 4509-4530.	1.9	17
15	A NEW ENANTIOSELECTIVE ASYMMETRIC SYNTHESIS OF TRI-CO-ORDINATE PHOSPHORUS COMPOUNDS FROM DI-CO-ORDINATE λ3-ARYL(ALKYL)IMINOPHOSPHINES. Phosphorous and Sulfur and the Related Elements, 1988, 36, 267-270.	0.2	16
16	Methylidynetrisphosphonates: Promising C1building block for the design of phosphate mimetics. Beilstein Journal of Organic Chemistry, 2013, 9, 991-1001.	2.2	16
17	Synthesis of stable monomeric metaphosphonimidates, aryl(oxo, thioxo-, or) Tj ETQq1 1 0.784314 rgBT /Overloch	10 Tf 50 2.0	102 Td (se
18	Formation of the monoanion [Ar*P(BH3)(µ-BH2)2H]– with a symmetrically bridging hydride from the attempted synthesis of the dianion [Ar*P(BH3)3]2–. Chemical Communications, 2001, , 1634-1635.	4.1	14

VADIM D ROMANENKO

#	Article	IF	CITATIONS
19	The phosphaalkene-phosphenium cations (R2N)2C=P-P+-NR′2 a route towards diphosphenes and phosphaallylic cations. Tetrahedron Letters, 1991, 32, 2775-2778.	1.4	13
20	First gas-phase generation of a cis chloroiminoarsane ClAsNSiMe3 and a cis chloroiminophosphane ClPNSiMe2tBu. Characterization by photoelectron spectroscopy. New Journal of Chemistry, 2001, 25, 930-938.	2.8	13
21	Intramolecular donor-stabilized phosphanylium salts via λ3-Functionalized-iminophosphanes. Tetrahedron Letters, 1995, 36, 2085-2088.	1.4	11
22	Phosphonate derivatives of tetraazamacrocycles as new inhibitors of protein tyrosine phosphatases. Organic and Biomolecular Chemistry, 2015, 13, 7437-7444.	2.8	11
23	Progress in the Development of Pyrophosphate Bioisosteres: Synthesis and Biomedical Potential of 1-Fluoro- and 1,1-Difluoromethylene-1,1-bisphosphonates. Current Organic Chemistry, 2014, 18, 1491-1512.	1.6	10
24	The synthesis of pentadienylium salts via reactions of (5-ethoxy-1,5-diaryl-2,4-pentadienylidene)ethyloxonium perchlorate with hydrazines. Tetrahedron Letters, 1996, 37, 6717-6720.	1.4	9
25	Role of the 2,6-Bis(trifluoromethyl)phenyl Group on the Acidity of the Corresponding Phosphane. European Journal of Inorganic Chemistry, 2004, 2004, 381-387.	2.0	9
26	Design and Synthesis of New Potent Inhibitors of Farnesyl Pyrophosphate Synthase. Current Drug Discovery Technologies, 2014, 11, 133-144.	1.2	9
27	A new synthetic route to λ3-iminophosphines involving nucleophilic displacement reactions on aminoiminophosphines. Journal of the Chemical Society Chemical Communications, 1983, , 187-189.	2.0	8
28	α-Heteroatom-substituted gem-Bisphosphonates: Advances in the Synthesis and Prospects for Biomedical Application. Current Organic Chemistry, 2019, 23, 530-615.	1.6	7
29	Utilization of Aminophosphonates in the Petasis Boronic Acid Mannich Reaction. Synlett, 2010, 2010, 73-76.	1.8	6
30	Condensation of diethyl fluoromethylphosphonate with esters: An alternative synthetic route to diethyl α-fluoro-β-ketophosphonates. Journal of Fluorine Chemistry, 2018, 211, 124-128.	1.7	6
31	Interaction of N,N-bis(trimethylsilyl)amino-N′-trimethylsilyliminophosphine with bis(trimethylsilyl)mercury: a new route to compounds containing the P–Si linkage. Journal of the Chemical Society Chemical Communications, 1983, , 808-809.	2.0	5
32	Reactions of chlorophosphenium salts with 1,1,3,3-tetraalkyl-2-trimethylsilylguanidines. Molecular structures of new heterocyclic systems: [R2NPN{C(NR2)2}]2 2+ and [R2NP{N[C(NR2)2]}]2AlCl3. Journal of the Chemical Society Chemical Communications, 1993, , 963.	2.0	5
33	Synthesis and characterization of new phosphanylium and phosphanetriylammonium salts. Molecular structures of [(Me2N)PN(AlCl3)R] and [P(NPri2)(NHR)]+[CF3SO3]–(R = C6H2But3-2,4,6). Journal of the Chemical Society Dalton Transactions, 1994, , 2925-2931.	1.1	5
34	Amidino Pentadienylium Salts â^' A New Cyanine Dye Type. European Journal of Organic Chemistry, 1998, 1998, 329-333.	2.4	5
35	(2,4,6-Tri-tert-butylphenylimino)thioxo-and -selenoxophosphoranes. Synthesis and structural characterization. Heteroatom Chemistry, 1992, 3, 181-187.	0.7	4

An efficient synthesis of phosphenimidous esters, ROPNAr. Heteroatom Chemistry, 1992, 3, 453-458. 0.7 4

#	Article	IF	CITATIONS
37	A new and direct synthesis of 1-acylamino-2,6-diaryl pyridinium salts. Tetrahedron Letters, 1998, 39, 4809-4812.	1.4	4
38	Tetrakis(trimethylsilyl) Ethenylidene-1,1-bisphosphonate: A Mild and Convenient Michael Acceptor for the Synthesis of 2-Aminoethylidene-1,1-bisphosphonic Acids and Their Potassium Salts. Synlett, 2011, 2011, 1370-1374.	1.8	4
39	Phosphonate analogues of nucleoside polyphosphates. Arkivoc, 2019, 2018, 1-49.	0.5	4
40	Reactions of Iminophosphanes with Chlorotris(triphenylphosphine)rhodium(I): Generation and NMR Identification of the First Iminophosphanerhodium(I) and Iminophosphanerhodium(III) Complexes. Mendeleev Communications, 1993, 3, 7-8.	1.6	1
41	The First Examples of Donor-Stabilized Phosphanetriyl-Phosphonium [RP2] Ions. Phosphorus, Sulfur and Silicon and the Related Elements, 1996, 111, 200-200.	1.6	1
42	Tetrakis(trimethylsilyl) Ethenylidenebisphosphonate: A Mild and Useful Reagent for the Synthesis of Substituted 2-Aminoethylidene-1,1-bisphosphonic Acids. Phosphorus, Sulfur and Silicon and the Related Elements, 2011, 186, 799-801.	1.6	1
43	Functions Containing Doubly Bonded P, As, Sb, Bi, Si, Ge, B or a Metal. , 1995, , 677-724.		1
44	Theoretical Comparison of the Electronic Structures of [PhN2]+ and [PhP2]+ – Can the Benzenediphosphonium Cation Exist in the Gas Phase?. European Journal of Inorganic Chemistry, 1998, 1998, 1821-1825.	2.0	0
45	Synthesis and Reactivity of a Stable Crystalline Diastereomerically Pure Trifluoromethanesulfinic Acid Derivative: (S)-(-)-1-Trifluoromethylsulfinyl-(R)-4-phenyloxazolidine-2-one ChemInform, 2003, 34, no.	0.0	0
46	Silicon—Mercury Derivatives in Organic Synthesis. ChemInform, 2005, 36, no.	0.0	0
47	New Trends in the Development of C-P Bond Forming Reactions. Current Organic Chemistry, 2021, 25, .	1.6	0
48	From Elusive Monomeric Metaphosphates to Oligomeric Metaphosphate Reagents: New Avenue to Halogen-Free Phosphorylation of Biomolecules. Current Organic Chemistry, 2022, 26, .	1.6	0