Irene Dini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7859792/publications.pdf

Version: 2024-02-01

		361296	360920
50	1,295	20	35
papers	citations	h-index	g-index
50	50	50	1399
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Contribution of Nanoscience Research in Antioxidants Delivery Used in Nutricosmetic Sector. Antioxidants, 2022, 11, 563.	2.2	12
2	In Vitro Application of Exogenous Fibrolytic Enzymes from Trichoderma Spp. to Improve Feed Utilization by Ruminants. Agriculture (Switzerland), 2022, 12, 573.	1.4	10
3	The commercial importance of defining î"â€9â€tetrahydrocannabinol levels in hemp. Phytotherapy Research, 2022, 36, 3369-3370.	2.8	O
4	The commercial importance to develop validated analytical methods to define phytochemical levels in herbal medicinal products. Phytotherapy Research, 2022, 36, 3675-3677.	2.8	1
5	Trichoderma Enzymes for Degradation of Aflatoxin B1 and Ochratoxin A. Molecules, 2022, 27, 3959.	1.7	14
6	Monitoring of Pollutants Content in Bottled and Tap Drinking Water in Italy. Molecules, 2022, 27, 3990.	1.7	10
7	Parabens Permeation through Biological Membranes: A Comparative Study Using Franz Cell Diffusion System and Biomimetic Liquid Chromatography. Molecules, 2022, 27, 4263.	1.7	11
8	Plant cell culture extract of Cirsium eriophorum with skin pore refiner activity by modulating sebum production and inflammatory response. Phytotherapy Research, 2021, 35, 530-540.	2.8	13
9	An Extract from Ficus carica Cell Cultures Works as an Anti-Stress Ingredient for the Skin. Antioxidants, 2021, 10, 515.	2.2	17
10	Trichoderma Strains and Metabolites Selectively Increase the Production of Volatile Organic Compounds (VOCs) in Olive Trees. Metabolites, 2021, 11, 213.	1.3	20
11	The Nutraceutical Properties of "Pizza Napoletana Marinara TSG―a Traditional Food Rich in Bioaccessible Antioxidants. Antioxidants, 2021, 10, 495.	2.2	11
12	Spices, Condiments, Extra Virgin Olive Oil and Aromas as Not Only Flavorings, but Precious Allies for Our Wellbeing. Antioxidants, 2021, 10, 868.	2.2	29
13	The New Challenge of Green Cosmetics: Natural Food Ingredients for Cosmetic Formulations. Molecules, 2021, 26, 3921.	1.7	61
14	Effect of Selected Trichoderma Strains and Metabolites on Olive Drupes. Applied Sciences (Switzerland), 2021, 11, 8710.	1.3	10
15	Comparison between Mid-Infrared (ATR-FTIR) Spectroscopy and Official Analysis Methods for Determination of the Concentrations of Alcohol, SO2, and Total Acids in Wine. Separations, 2021, 8, 191.	1.1	5
16	Phenylalanine Butyramide Is a New Cosmetic Ingredient with Soothing and Anti-Reddening Potential. Molecules, 2021, 26, 6611.	1.7	6
17	Bio Discarded from Waste to Resource. Foods, 2021, 10, 2652.	1.9	12
18	The Potential of Dietary Antioxidants. Antioxidants, 2021, 10, 1752.	2.2	7

#	Article	IF	CITATIONS
19	Development and Validation of an Analytical Method for Total Polyphenols Quantification in Extra Virgin Olive Oils. Food Analytical Methods, 2020, 13, 457-464.	1.3	24
20	An Innovative Olive Pâté with Nutraceutical Properties. Antioxidants, 2020, 9, 581.	2.2	26
21	Kancolla Seeds. , 2020, , 211-227.		0
22	Pharmacological and molecular docking assessment of cryptotanshinone as natural-derived analgesic compound. Biomedicine and Pharmacotherapy, 2020, 126, 110042.	2.5	9
23	Validation of Rapid Enzymatic Quantification of Acetic Acid in Vinegar on Automated Spectrophotometric System. Foods, 2020, 9, 761.	1.9	9
24	An Environmentally Friendly Practice Used in Olive Cultivation Capable of Increasing Commercial Interest in Waste Products from Oil Processing. Antioxidants, 2020, 9, 466.	2.2	19
25	Effects of Trichoderma Biostimulation on the Phenolic Profile of Extra-Virgin Olive Oil and Olive Oil By-Products. Antioxidants, 2020, 9, 284.	2.2	36
26	New Strategies in the Cultivation of Olive Trees and Repercussions on the Nutritional Value of the Extra Virgin Olive Oil. Molecules, 2020, 25, 2345.	1.7	25
27	The Nutraceutical Properties of "Pizza Marinara TSG―a Traditional Food Rich in Bioaccessible Antioxidants. Medical Sciences Forum, 2020, 2, .	0.5	0
28	Dosage of Bioactive Molecules in the Nutricosmeceutical <i>Helix aspersa</i> Muller Mucus and Formulation of New Cosmetic Cream with Moisturizing Effect. Natural Product Communications, 2019, 14, 1934578X1986860.	0.2	18
29	Nutricosmetics: A brief overview. Phytotherapy Research, 2019, 33, 3054-3063.	2.8	57
30	Raisins and Currants as Conventional Nutraceuticals in Italian Market: Natural Occurrence of Ochratoxin A. Journal of Food Science, 2017, 82, 2306-2312.	1.5	25
31	Use of Essential Oils in Food Packaging. , 2016, , 139-147.		5
32	Flavonoid glycosides from Pouteria obovata (R. Br.) fruit flour. Food Chemistry, 2011, 124, 884-888.	4.2	20
33	Red Onion (Allium caepa L. var. tropeana) Seeds. , 2011, , 981-990.		2
34	Antioxidant compound contents and antioxidant activity before and after cooking in sweet and bitter Chenopodium quinoa seeds. LWT - Food Science and Technology, 2010, 43, 447-451.	2.5	115
35	Saponins in Ipomoea batatas tubers: Isolation, characterization, quantification and antioxidant properties. Food Chemistry, 2009, 113, 411-419.	4. 2	66
36	Chemical composition, nutritional value and antioxidant properties of Allium caepa L. Var. tropeana (red onion) seeds. Food Chemistry, 2008, 107, 613-621.	4.2	89

#	Article	IF	CITATIONS
37	<i>S</i> -Alkenyl Cysteine Sulfoxide and Its Antioxidant Properties from <i>Allium cepa</i> var. <i>tropeana</i> (Red Onion) Seeds. Journal of Natural Products, 2008, 71, 2036-2037.	1.5	60
38	New Polyphenol Derivative inIpomoea batatasTubers and Its Antioxidant Activity. Journal of Agricultural and Food Chemistry, 2006, 54, 8733-8737.	2.4	48
39	Seven New Aminoacyl Sugars in Ipomoea batatas. Journal of Agricultural and Food Chemistry, 2006, 54, 6089-6093.	2.4	8
40	Two novel betaine derivatives from Kancolla seeds (Chenopodiaceae). Food Chemistry, 2006, 98, 209-213.	4.2	17
41	Furostanol saponins in Allium caepa L. Var. tropeana seeds. Food Chemistry, 2005, 93, 205-214.	4.2	37
42	Phenolic constituents of Kancolla seeds. Food Chemistry, 2004, 84, 163-168.	4.2	68
43	Oleanane Saponins in "Kancollaâ€, a Sweet Variety ofChenopodiumquinoa. Journal of Natural Products, 2002, 65, 1023-1026.	1.5	24
44	Glucosinolates from Maca (Lepidium meyenii). Biochemical Systematics and Ecology, 2002, 30, 1087-1090.	0.6	52
45	Studies on the Constituents of Chenopodium quinoa Seeds: ÂIsolation and Characterization of New Triterpene Saponins. Journal of Agricultural and Food Chemistry, 2001, 49, 741-746.	2.4	74
46	New Oleanane Saponins inChenopodium quinoa. Journal of Agricultural and Food Chemistry, 2001, 49, 3976-3981.	2.4	34
47	Flavonoid Glycosides ofBarbarea vulgarisL. (Brassicaceae). Journal of Agricultural and Food Chemistry, 2000, 48, 2659-2662.	2.4	44
48	Two new quercetagetin O-glucosides from Tagetes mandonii. Biochemical Systematics and Ecology, 1999, 27, 309-311.	0.6	6
49	Studies on the Constituents of Lupinus mutabilis (Fabaceae). Isolation and Characterization of Two New Isoflavonoid Derivatives. Journal of Agricultural and Food Chemistry, 1998, 46, 5089-5092.	2.4	18
50	Phenolic Metabolites fromOrobanche speciosa. Planta Medica, 1995, 61, 389-390.	0.7	11