Toshinori Fujie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7859665/publications.pdf

Version: 2024-02-01

107	3,475	31	56
papers	citations	h-index	g-index
111	111	111	5175
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Ultraâ€Thin and Conformable Electrodes Composed of Singleâ€Walled Carbon Nanotube Networks for Skinâ€Contact Dielectric Elastomer Actuators. Advanced Electronic Materials, 2023, 9, .	2.6	8
2	High-Frequency, low-voltage oscillations of dielectric elastomer actuators. Applied Physics Express, 2022, 15, 011002.	1.1	8
3	Paperâ€Based Wearable Ammonia Gas Sensor Using Organic–Inorganic Composite PEDOT:PSS with Iron(III) Compounds. Advanced Materials Technologies, 2022, 7, .	3.0	14
4	Angiogenic efficacy of <scp>ASC</scp> spheroids filtrated on porous nanosheets for the treatment of a diabetic skin ulcer. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 1245-1254.	1.6	2
5	Flexible Thin-Film Device for Powering Soft Robots. Journal of Robotics and Mechatronics, 2022, 34, 227-230.	0.5	4
6	Transparent and Breathable Ion Gelâ€Based Sensors toward Multimodal Sensing Ability. Advanced Materials Technologies, 2022, 7, .	3.0	7
7	Transparent and Breathable Temperature/Humidity Sensor using Ion Gel and Elastomer Nanosheet. IEEJ Transactions on Sensors and Micromachines, 2022, 142, 168-169.	0.0	O
8	Bionic Organs and Tissues. IEEE Transactions on Medical Robotics and Bionics, 2021, 3, 295-296.	2.1	1
9	Flexible Induction Heater Based on the Polymeric Thin Film for Local Thermotherapy. Advanced Functional Materials, 2021, 31, 2102444.	7.8	22
10	Enhanced cellular engraftment of adipose-derived mesenchymal stem cell spheroids by using nanosheets as scaffolds. Scientific Reports, 2021, 11, 14500.	1.6	15
11	Polymeric Nanofilm-Based Skin-Interfaced Wearable Devices "Second-Skin Electronics― Journal of Japan Institute of Electronics Packaging, 2021, 24, 353-360.	0.0	O
12	Polymer Nanosheet Interfaced Bioelectrode for Skinâ€Inert sEMG Measurement. Advanced Materials Interfaces, 2021, 8, 2100213.	1.9	4
13	Flexible Film-Type Sensor for Electrochemical Measurement of Dopamine Using a Molecular Imprinting Method. Frontiers in Sensors, 2021, 2, .	1.7	2
14	Design and fabrication of a flexible glucose sensing platform toward rapid battery-free detection of hyperglycaemia. Journal of Materials Chemistry C, 2021, 9, 7336-7344.	2.7	7
15	Graphene/Au Hybrid Antenna Coil Exfoliated with Multiâ€Stacked Graphene Flakes for Ultraâ€Thin Biomedical Devices. Advanced Electronic Materials, 2020, 6, 1901143.	2.6	13
16	Efficient differentiation and polarization of primary cultured neurons on poly(lactic acid) scaffolds with microgrooved structures. Scientific Reports, 2020, 10, 6716.	1.6	8
17	Stretchable and Highâ€Adhesive Plasmonic Metasheet Using Al Subwavelength Grating Embedded in an Elastomer Nanosheet. Advanced Optical Materials, 2020, 8, 1902074.	3.6	9
18	A Coupled FEMâ€5PH Modeling Technique to Investigate the Contractility of Biohybrid Thin Films. Advanced Biology, 2020, 4, e1900306.	3.0	6

#	Article	IF	CITATIONS
19	Biopotential Measurement of Plant Leaves with Ultra-Light and Flexible Conductive Polymer Nanosheets. Bulletin of the Chemical Society of Japan, 2020, 93, 1007-1013.	2.0	14
20	Ultra-thin, transparent, porous substrates as 3D culture scaffolds for engineering ASC spheroids for high-magnification imaging. Journal of Materials Chemistry B, 2020, 8, 6999-7008.	2.9	6
21	Wet-adhesive, haemostatic and antimicrobial bilayered composite nanosheets for sealing and healing soft-tissue bleeding wounds. Biomaterials, 2020, 252, 120018.	5.7	62
22	Metronomic photodynamic therapy using an implantable LED device and orally administered 5-aminolevulinic acid. Scientific Reports, 2020, 10, 22017.	1.6	25
23	Self-healing Cell Tactile Sensor Fabricated Using Ultraflexible Printed Electrodes. , 2020, , .		2
24	Tissue-adhesive wirelessly powered optoelectronic device for metronomic photodynamic cancer therapy. Nature Biomedical Engineering, 2019, 3, 27-36.	11.6	155
25	Printed nanofilms mechanically conforming to living bodies. Biomaterials Science, 2019, 7, 520-531.	2.6	36
26	Sinter-free stretchable conductive inks composed of polystyrene-block-polybutadiene-block-polystyrene and silver flakes in tetrahydrofuran. Applied Physics Express, 2019, 12, 075001.	1.1	6
27	3D Bioprinting in Skeletal Muscle Tissue Engineering. Small, 2019, 15, e1805530.	5. 2	192
28	Biohybrid Actuators Based on Skeletal Muscle-Powered Microgrooved Ultrathin Films Consisting of Poly(styrene- <i>block</i> blockstyrene). ACS Biomaterials Science and Engineering, 2019, 5, 5734-5743.	2.6	30
29	Elastomer-based MEMS optical interferometric transducers for highly sensitive surface stress sensing for biomolecular detection. MRS Communications, 2019, 9, 381-389.	0.8	7
30	Organic Electronics: Ultrathin and Stretchable Rechargeable Devices with Organic Polymer Nanosheets Conformable to Skin Surface (Small 13/2019). Small, 2019, 15, 1970067.	5.2	1
31	Ultrathin and Stretchable Rechargeable Devices with Organic Polymer Nanosheets Conformable to Skin Surface. Small, 2019, 15, 1805296.	5. 2	30
32	Plasmonic Color Sheet with Al Nano Periodic Structure Formed by Transfer Technique., 2019,,.		0
33	Elastic kirigami patch for electromyographic analysis of the palm muscle during baseball pitching. NPG Asia Materials, 2019, 11, .	3.8	24
34	Inkjet-Printed Neural Electrodes with Mechanically Gradient Structure. ACS Applied Bio Materials, 2019, 2, 20-26.	2.3	18
35	In situ transplantation of adipose tissueâ€derived stem cells organized on porous polymer nanosheets for murine skin defects. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 1363-1371.	1.6	14
36	MEMS optical interferometry-based pressure sensor using elastomer nanosheet developed by dry transfer technique. Japanese Journal of Applied Physics, 2018, 57, 010302.	0.8	2

#	Article	IF	CITATIONS
37	Extracellular pH imaging of a plant leaf with a polyelectrolyte multilayered nanosheet. RSC Advances, 2018, 8, 35651-35657.	1.7	5
38	Measurement of conformability and adhesion energy of polymeric ultrathin film to skin model. Japanese Journal of Applied Physics, 2018, 57, 06HJ04.	0.8	6
39	Contact-induced stiffening in ultrathin amorphous polystyrene films. Polymer, 2018, 153, 521-528.	1.8	5
40	Three-dimensional co-culture of C2C12/PC12 cells improves skeletal muscle tissue formation and function. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 582-595.	1.3	70
41	Sandwich fixation of electronic elements using free-standing elastomeric nanosheets for low-temperature device processes. Journal of Materials Chemistry C, 2017, 5, 1321-1327.	2.7	17
42	Printed high-frequency RF identification antenna on ultrathin polymer film by simple production process for soft-surface adhesive device. Japanese Journal of Applied Physics, 2017, 56, 05EC01.	0.8	7
43	Thin polymeric films for building biohybrid microrobots. Bioinspiration and Biomimetics, 2017, 12, 021001.	1.5	23
44	Development of Flexible Cell-Loaded Ultrathin Ribbons for Minimally Invasive Delivery of Skeletal Muscle Cells. ACS Biomaterials Science and Engineering, 2017, 3, 579-589.	2.6	15
45	Hybrid film for self-adhesion and shape-controlling. , 2017, , .		1
46	An elastomer-based MEMS fabry-perot interferometer for physical and biological sensing by dry transfer technique., 2017,,.		1
47	Optomechanical characterization of freestanding stretchable nanosheet based on polystyrene–polybutadiene–polystyrene copolymer. Applied Physics Express, 2017, 10, 011601.	1.1	6
48	On the injectability of free-standing magnetic nanofilms. Biomedical Microdevices, 2017, 19, 51.	1.4	8
49	The efficacy of basic fibroblast growth factorâ€loaded poly(lacticâ€ <i>co</i> â€glycolic acid) nanosheet for mouse wound healing. Wound Repair and Regeneration, 2017, 25, 1008-1016.	1.5	16
50	Ultrathin epidermal strain sensor based on an elastomer nanosheet with an inkjet-printed conductive polymer. Applied Physics Express, 2017, 10, 087201.	1.1	38
51	Construction of A New Cs ⁺ Extraction Process by Using Calix Crown-Containing Magnetic Nanoparticle-Loaded Fragmented Nanosheets. Kobunshi Ronbunshu, 2017, 74, 99-108.	0.2	0
52	Development of a ubiquitously transferrable silverâ€nanoparticleâ€loaded polymer nanosheet as an antimicrobial coating. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 585-593.	1.6	17
53	Sheet shape-controlling method for hundreds-of-nanometer-thick polymer film using soluble polymer layer. Japanese Journal of Applied Physics, 2016, 55, 06GP21.	0.8	3
54	Development of free-standing polymer nanosheets for advanced medical and health-care applications. Polymer Journal, 2016, 48, 773-780.	1.3	87

#	Article	IF	CITATIONS
55	Glue-Free Stacked Luminescent Nanosheets Enable High-Resolution Ratiometric Temperature Mapping in Living Small Animals. ACS Applied Materials & Interfaces, 2016, 8, 33377-33385.	4.0	29
56	Fabrication and evaluation of freestanding stretchable nanosheet for optical MEMS application. , 2016, , .		1
57	Largeâ€Scale Fabrication of Porous Polymer Nanosheets for Engineering Hierarchical Cellular Organization. Advanced Materials Technologies, 2016, 1, 1600064.	3.0	22
58	Stretchable, adhesive and ultra-conformable elastomer thin films. Soft Matter, 2016, 12, 9202-9209.	1.2	59
59	Interfacial effects on the crystallization and surface properties of poly(l-lactic acid) ultrathin films. Polymer Journal, 2016, 48, 157-161.	1.3	7
60	Sustainable antimicrobial effect of silver sulfadiazine-loaded nanosheets on infection in a mouse model of partial-thickness burn injury. Acta Biomaterialia, 2015, 24, 87-95.	4.1	80
61	Spatial coordination of cell orientation directed by nanoribbon sheets. Biomaterials, 2015, 53, 86-94.	5.7	39
62	Roll to roll processing of ultraconformable conducting polymer nanosheets. Journal of Materials Chemistry C, 2015, 3, 6539-6548.	2.7	68
63	Stem Cell Differentiation Toward the Myogenic Lineage for Muscle Tissue Regeneration: A Focus on Muscular Dystrophy. Stem Cell Reviews and Reports, 2015, 11, 866-884.	5.6	35
64	Microfabrication and Nanofabrication Techniques. , 2015, , 207-219.		1
65	2C43 Cell delivery to the subretinal space of rats using nanosheets. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2015, 2015.27, 419-420.	0.0	0
66	Influence of nanoparticleâ€embedded polymeric surfaces on cellular adhesion, proliferation, and differentiation. Journal of Biomedical Materials Research - Part A, 2014, 102, 2652-2661.	2.1	18
67	Micropatterned Polymeric Nanosheets for Local Delivery of an Engineered Epithelial Monolayer. Advanced Materials, 2014, 26, 1699-1705.	11.1	49
68	Myotube formation on gelatin nanofibers – Multi-walled carbon nanotubes hybrid scaffolds. Biomaterials, 2014, 35, 6268-6277.	5.7	109
69	Periosteumâ€Mimetic Structures Made from Freestanding Microgrooved Nanosheets. Advanced Materials, 2014, 26, 3290-3296.	11.1	94
70	Skeletal Muscle Tissue Engineering: Methods to Form Skeletal Myotubes and Their Applications. Tissue Engineering - Part B: Reviews, 2014, 20, 403-436.	2.5	218
71	Development of Polymer Nanosheets Inspired by Extracellular Matrix Towards Tissue Engineering Applications. Kobunshi Ronbunshu, 2014, 71, 408-417.	0.2	0
72	1C31 Applications of micro/nanotechnologies to ophthalmology. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2014, 2014.26, 87-88.	0.0	0

#	Article	IF	CITATIONS
73	Engineered Nanomembranes for Directing Cellular Organization Toward Flexible Biodevices. Nano Letters, 2013, 13, 3185-3192.	4.5	85
74	Novel therapeutic use of polysaccharide nanosheets for arachnoid plasty and enhancement of venous tensile strength in rat microneurosurgery. Journal of Clinical Neuroscience, 2013, 20, 301-305.	0.8	5
75	Effective control of massive venous bleeding by "multioverlapping therapy―using polysaccharide nanosheets in a rabbit inferior vena cava injury model. Journal of Vascular Surgery: Venous and Lymphatic Disorders, 2013, 1, 289-297.	0.9	10
76	Microwrinkled Conducting Polymer Interface for Anisotropic Multicellular Alignment. ACS Applied Materials & Samp; Interfaces, 2013, 5, 573-584.	4.0	106
77	Selective Molecular Permeability Induced by Glass Transition Dynamics of Semicrystalline Polymer Ultrathin Films. Macromolecules, 2013, 46, 395-402.	2.2	30
78	Fragmentation of Poly(lactic acid) Nanosheets and Patchwork Treatment for Burn Wounds. Advanced Materials, 2013, 25, 545-551.	11.1	69
79	Application of nanosheets as an anti-adhesion barrier in partial hepatectomy. , 2013, 101, 1251-1258.		19
80	Application of Poly-L-Lactic Acid Nanosheet as a Material for Wound Dressing. Plastic and Reconstructive Surgery, 2013, 131, 236-240.	0.7	19
81	Boron Nitride Nanotube-Mediated Stimulation of Cell Co-Culture on Micro-Engineered Hydrogels. PLoS ONE, 2013, 8, e71707.	1.1	66
82	Anisotropic Cellular Alignment on Nano-Wrinkled Polymeric Surface. Materials Research Society Symposia Proceedings, 2012, 1415, 54.	0.1	2
83	Micro and Nanowrinkled Conductive Polymer Surfaces on Shape-memory Polymer Substrates: Tuning of Surface Microfeatures Towards Smart Biointerfaces Materials Research Society Symposia Proceedings, 2012, 1411, 13.	0.1	2
84	A bio-inspired approach towards the development of soft amoeboid microrobots. , 2012, , .		6
85	Heterofunctional nanosheet controlling cell adhesion properties by collagen coating. Journal of Biomaterials Applications, 2012, 27, 131-141.	1.2	28
86	Inkjet printing of protein microarrays on freestanding polymeric nanofilms for spatio-selective cell culture environment. Biomedical Microdevices, 2012, 14, 1069-1076.	1.4	28
87	An ultrathin poly(<scp>l</scp> ″actic acid) nanosheet as a burn wound dressing for protection against bacterial infection. Wound Repair and Regeneration, 2012, 20, 573-579.	1.5	37
88	Therapeutic efficacy of an antibiotic-loaded nanosheet in a murine burn-wound infection model. Acta Biomaterialia, 2012, 8, 2932-2940.	4.1	43
89	Ultra-thin conductive free-standing PEDOT/PSS nanofilms. Soft Matter, 2011, 7, 10642.	1.2	173
90	Convenient method for surface modification by patching a freestanding anti-biofouling nanosheet. Journal of Materials Chemistry, 2011, 21, 9112.	6.7	17

#	Article	IF	CITATIONS
91	Evaluation of Substrata Effect on Cell Adhesion Properties Using Freestanding Poly(I-lactic acid) Nanosheets. Langmuir, 2011, 27, 13173-13182.	1.6	53
92	Free-Standing Poly(<scp>l</scp> -lactic acid) Nanofilms Loaded with Superparamagnetic Nanoparticles. Langmuir, 2011, 27, 5589-5595.	1.6	49
93	Freestanding Functionalized Nanofilms for Biomedical Applications. Procedia Computer Science, 2011, 7, 337-339.	1.2	6
94	Novel technique of overlaying a poly-l-lactic acid nanosheet for adhesion prophylaxis and fixation of intraperitoneal onlay polypropylene mesh in a rabbit model. Surgical Endoscopy and Other Interventional Techniques, 2011, 25, 3428-3436.	1.3	24
95	Adhesion and proliferation of skeletal muscle cells on single layer poly(lactic acid) ultra-thin films. Biomedical Microdevices, 2010, 12, 809-819.	1.4	48
96	Sealing effect of a polysaccharide nanosheet for murine cecal puncture. Surgery, 2010, 148, 48-58.	1.0	31
97	Dual therapeutic action of antibiotic-loaded nanosheets for the treatment of gastrointestinal tissue defects. Biomaterials, 2010, 31, 6269-6278.	5.7	56
98	A nano-fibrous assembly of collagen–hyaluronic acid for controlling cell-adhesive properties. Soft Matter, 2010, 6, 4672.	1.2	28
99	Adhesive, Flexible, and Robust Polysaccharide Nanosheets Integrated for Tissueâ€Defect Repair. Advanced Functional Materials, 2009, 19, 2560-2568.	7.8	164
100	Development of fibrinogen γâ€chain peptideâ€coated, adenosine diphosphateâ€encapsulated liposomes as a synthetic platelet substitute. Journal of Thrombosis and Haemostasis, 2009, 7, 470-477.	1.9	67
101	Fabrication and characterization of ultra-thin magnetic films for biomedical applications. Procedia Chemistry, 2009, 1, 28-31.	0.7	13
102	Selective surface modification of free-standing polysaccharide nanosheet with micro/nano-particles identified by structural color changes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 334, 28-33.	2.3	21
103	Hydrodynamic Transformation of a Freestanding Polymer Nanosheet Induced by a Thermoresponsive Surface. ACS Applied Materials & Surface. ACS Applied Materials & Surfaces, 2009, 1, 1404-1413.	4.0	42
104	Haemostatic effects of polymerized albumin particles carrying fibrinogen γâ€chain dodecapeptide as platelet substitutes in severely thrombocytopenic rabbits. Transfusion Medicine, 2008, 18, 158-166.	0.5	29
105	Development of biodegradable nanosheets as nanoadhesive plaster. Pure and Applied Chemistry, 2008, 80, 2259-2271.	0.9	23
106	Ubiquitous Transference of a Freeâ€Standing Polysaccharide Nanosheet with the Development of a Nanoâ€Adhesive Plaster. Advanced Materials, 2007, 19, 3549-3553.	11.1	134
107	Prolonged hemostatic ability of polyethylene glycol?modified polymerized albumin particles carrying fibrinogen ?-chain dodecapeptide. Transfusion, 2007, 47, 1254-1262.	0.8	23