
Anupam Agrawal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7859299/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Wide bandgap D-A copolymers with same medium dithieno [2,3-e;3′2′-g]isoindole-7,9 (8H) acceptor and different donors for high-performance fullerene free polymer solar cells with efficiency up to 14.76%. Chemical Engineering Journal, 2022, 427, 131404.	6.6	7
2	Noncovalent Conformational Locks Enabling Efficient Nonfullerene Acceptors. Solar Rrl, 2022, 6, 2100768.	3.1	13
3	Truxene π-Expanded BODIPY Star-Shaped Molecules as Acceptors for Non-Fullerene Solar Cells with over 13% Efficiency. ACS Applied Energy Materials, 2022, 5, 2279-2289.	2.5	23
4	Advancements, frontiers and analysis of metal oxide semiconductor, dye, electrolyte and counter electrode of dye sensitized solar cell. Solar Energy, 2022, 233, 378-407.	2.9	52
5	Efficient ternary bulk heterojunction organic solar cells using a low-cost nonfullerene acceptor. Journal of Materials Chemistry C, 2022, 10, 4372-4382.	2.7	5
6	High-Efficiency Ternary Organic Solar Cells Enabled by Synergizing Dicyanomethylene-Functionalized Coumarin Donors and Fullerene-Free Acceptors. ACS Applied Energy Materials, 2022, 5, 9020-9030.	2.5	7
7	NiO nanoparticles: Facile route synthesis, characterization and potential towards third generation solar cell. Materials Today: Proceedings, 2021, 43, 3061-3065.	0.9	9
8	A Novel Modular Approach for Kinematic Modeling and Analysis of Planar Hybrid Manipulators. Journal of Mechanical Design, Transactions of the ASME, 2021, 143, .	1.7	5
9	Incorporation of a Guaiacolâ€Based Small Molecule Guest Donor Enables Efficient Nonfullerene Acceptorâ€Based Ternary Organic Solar Cells. Solar Rrl, 2021, 5, 2100402.	3.1	8
10	Fullerene-Free All-Small-Molecule Ternary Organic Solar Cells with Two Compatible Fullerene-Free Acceptors and a Coumarin Donor Enabling a Power Conversion Efficiency of 14.5%. ACS Applied Energy Materials, 2021, 4, 11537-11544.	2.5	7
11	Binary and Ternary Polymer Solar Cells Based on a Wide Bandgap Dâ€A Copolymer Donor and Two Nonfullerene Acceptors with Complementary Absorption Spectral. ChemSusChem, 2021, 14, 4731-4740.	3.6	3
12	Ternary polymer solar cells based on wide bandgap and narrow bandgap non-fullerene acceptors with an efficiency of 16.40 % and a low energy loss of 0.53ÂeV. Materials Today Energy, 2021, 21, 100843.	2.5	4
13	Performance analysis of TiO2 based dye sensitized solar cell prepared by screen printing and doctor blade deposition techniques. Solar Energy, 2021, 226, 9-19.	2.9	26
14	New BODIPY derivatives with triarylamine and truxene substituents as donors for organic bulk heterojunction photovoltaic cells. Solar Energy, 2021, 227, 354-364.	2.9	12
15	ZnO nanoparticles based dye sensitized solar cell: Fabrication and characterization. AIP Conference Proceedings, 2020, , .	0.3	1
16	Ruthenium complexes based dye sensitized solar cells: Fundamentals and research trends. Solar Energy, 2020, 207, 59-76.	2.9	90
17	Device Modeling and Characteristics of Solution Processed Perovskite Solar Cell at Ambient Conditions. Lecture Notes in Electrical Engineering, 2020, , 981-988.	0.3	2
18	Recent Development in Perovskite Solar Cell Based on Planar Structures. Lecture Notes in Electrical Engineering, 2020, , 1039-1046.	0.3	2