Jannik Nedergaard Pedersen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7859024/publications.pdf

Version: 2024-02-01

610901 687363 31 620 13 24 g-index citations h-index papers 31 31 31 1027 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Bidirectional protein–protein interactions control liquid–liquid phase separation of PSD-95 and its interaction partners. IScience, 2022, 25, 103808.	4.1	6
2	Impact of Chemical Composition on the Nanostructure and Biological Activity of α-Galactosidase-Loaded Nanovesicles for Fabry Disease Treatment. ACS Applied Materials & Samp; Interfaces, 2021, 13, 7825-7838.	8.0	16
3	Perâ€glycosylation of the Surfaceâ€Accessible Lysines: Oneâ€Pot Aqueous Route to Stabilized Proteins with Native Activity. ChemBioChem, 2021, 22, 2478-2485.	2.6	O
4	Cys-labeling kinetics of membrane protein GlpG: a role for specific SDS binding and micelle changes?. Biophysical Journal, 2021, 120, 4115-4128.	0.5	4
5	Self-assembling properties of ionisable amphiphilic drugs in aqueous solution. Journal of Colloid and Interface Science, 2021, 600, 701-710.	9.4	10
6	Lipid Peroxidation Products HNE and ONE Promote and Stabilize Alpha-Synuclein Oligomers by Chemical Modifications. Biochemistry, 2021, 60, 3644-3658.	2.5	13
7	A complete picture of protein unfolding and refolding in surfactants. Chemical Science, 2020, 11, 699-712.	7.4	51
8	Peroxynitrous acid (ONOOH) modifies the structure of anastellin and influences its capacity to polymerize fibronectin. Redox Biology, 2020, 36, 101631.	9.0	5
9	Multi-Step Unfolding and Rearrangement of α-Lactalbumin by SDS Revealed by Stopped-Flow SAXS. Frontiers in Molecular Biosciences, 2020, 7, 125.	3.5	14
10	Structures and mechanisms of formation of liprotides. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2020, 1868, 140505.	2.3	4
11	DIBMA nanodiscs keep α-synuclein folded. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183314.	2.6	12
12	Bacterial amphiphiles as amyloid inducers: Effect of Rhamnolipid and Lipopolysaccharide on FapC fibrillation. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2019, 1867, 140263.	2.3	23
13	Plant Polyphenols Inhibit Functional Amyloid and Biofilm Formation in Pseudomonas Strains by Directing Monomers to Off-Pathway Oligomers. Biomolecules, 2019, 9, 659.	4.0	30
14	Bacillus Licheniformis CotA Laccase Mutant: ElectrocatalyticReduction of O 2 from 0.6â€V (SHE) at pH 8 and in Seawater. ChemElectroChem, 2019, 6, 2043-2049.	3.4	12
15	Insight into the Structure and Activity of Surfaceâ€Engineered Lipase Biofluids. ChemBioChem, 2019, 20, 1266-1272.	2.6	12
16	Mesoporous silica nanoparticles carrying multiple antibiotics provide enhanced synergistic effect and improved biocompatibility. Colloids and Surfaces B: Biointerfaces, 2019, 175, 498-508.	5.0	83
17	Lysophospholipids induce fibrillation of the repeat domain of Pmel17 through intermediate core-shell structures. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2019, 1867, 519-528.	2.3	17
18	Stabilizing vitamin D3 using the molten globule state of \hat{l}_{\pm} -lactalbumin. Journal of Dairy Science, 2018, 101, 1817-1826.	3.4	9

#	Article	lF	CITATIONS
19	Liprotides assist in folding of outer membrane proteins. Protein Science, 2018, 27, 451-462.	7.6	11
20	Role of Charge and Hydrophobicity in Liprotide Formation: A Molecular Dynamics Study with Experimental Constraints. ChemBioChem, 2018, 19, 263-271.	2.6	11
21	α-Synucleins from Animal Species Show Low Fibrillation Propensities and Weak Oligomer Membrane Disruption. Biochemistry, 2018, 57, 5145-5158.	2.5	15
22	Insight into the molecular mechanism behind PEG-mediated stabilization of biofluid lipases. Scientific Reports, 2018, 8, 12293.	3.3	15
23	Tailoring thermal treatment to form liprotide complexes between oleic acid and different proteins. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2017, 1865, 682-693.	2.3	3
24	Glycolipid Biosurfactants Activate, Dimerize, and Stabilize <i>Thermomyces lanuginosus</i> Lipase in a pH-Dependent Fashion. Biochemistry, 2017, 56, 4256-4268.	2.5	12
25	Gallic acid loaded onto polyethylenimine-coated human serum albumin nanoparticles (PEI-HSA-GA NPs) stabilizes α-synuclein in the unfolded conformation and inhibits aggregation. RSC Advances, 2016, 6, 85312-85323.	3.6	21
26	Using protein-fatty acid complexes to improve vitamin D stability. Journal of Dairy Science, 2016, 99, 7755-7767.	3.4	22
27	The Use of Liprotides To Stabilize and Transport Hydrophobic Molecules. Biochemistry, 2015, 54, 4815-4823.	2.5	16
28	Strong interactions with polyethylenimine-coated human serum albumin nanoparticles (PEI-HSA NPs) alter α-synuclein conformation and aggregation kinetics. Nanoscale, 2015, 7, 19627-19640.	5.6	29
29	The Nâ€terminus of αâ€synuclein is essential for both monomeric and oligomeric interactions with membranes. FEBS Letters, 2014, 588, 497-502.	2.8	102
30	Generic Structures of Cytotoxic Liprotides: Nanoâ€Sized Complexes with Oleic Acid Cores and Shells of Disordered Proteins. ChemBioChem, 2014, 15, 2693-2702.	2.6	37
31	Universal effective interactions of globular proteins close to liquid-liquid phase separation: corresponding-states behavior reflected in the structure factor. Journal of Chemical Physics, 0, , .	3.0	5