
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7858967/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Green synthesis and biological activities assessment of some new chromeno[2,3-b]pyridine derivatives.<br>Molecular Diversity, 2022, 26, 891-902.                                                                                            | 3.9  | 7         |
| 2  | Polysaccharide-based hydrogels: properties, advantages, challenges, and optimization methods for<br>applications in regenerative medicine. International Journal of Polymeric Materials and Polymeric<br>Biomaterials, 2022, 71, 1319-1333. | 3.4  | 26        |
| 3  | Bioreducible and pH-responsive shell crosslinked polymeric micelles from a star-shaped terpolymer as<br>drug delivery system. International Journal of Polymeric Materials and Polymeric Biomaterials, 2022,<br>71, 481-492.                | 3.4  | 12        |
| 4  | Sulfur functionality-modified starches: Review of synthesis strategies, properties, and applications.<br>International Journal of Biological Macromolecules, 2022, 197, 111-120.                                                            | 7.5  | 9         |
| 5  | Electroactive nanofibrous scaffold based on polythiophene for bone tissue engineering application.<br>Journal of Materials Research, 2022, 37, 796-806.                                                                                     | 2.6  | 7         |
| 6  | Folate-conjugated thermal- and pH-responsive magnetic hydrogel as a drug delivery nano-system for<br>"smart―chemo/hyperthermia therapy of solid tumors. Materials Today Communications, 2022, 30,<br>103148.                                | 1.9  | 21        |
| 7  | Modification of Highâ€Density Polyethylene through the Grafting of Methyl Methacrylate Using RAFT<br>Technique and Preparation of Its Polymer/Clay Nanocomposites**. ChemistrySelect, 2022, 7, .                                            | 1.5  | 1         |
| 8  | A novel stimuli-responsive magnetic hydrogel based on nature-inspired tragacanth gum for chemo/hyperthermia treatment of cancerous cells. Journal of Polymer Research, 2022, 29, 1.                                                         | 2.4  | 14        |
| 9  | Nanofibrous electroconductive nerve guide conduits based on polyanilineâ€coâ€polydopamine random<br>copolymer for peripheral nerve regeneration. Journal of Applied Polymer Science, 2022, 139, .                                           | 2.6  | 12        |
| 10 | Fabrication and characterization of electroconductive/osteoconductive hydrogel nanocomposite<br>based on poly(dopamine-co-aniline) containing calcium phosphate nanoparticles. Journal of Molecular<br>Liquids, 2022, 362, 119701.          | 4.9  | 8         |
| 11 | Irreversible thermal inactivation and conformational lock of alpha glucosidase. Journal of<br>Biomolecular Structure and Dynamics, 2021, 39, 1-7.                                                                                           | 3.5  | 5         |
| 12 | Gelatin-based nanofibrous electrically conductive scaffolds for tissue engineering applications.<br>International Journal of Polymeric Materials and Polymeric Biomaterials, 2021, 70, 693-702.                                             | 3.4  | 11        |
| 13 | A novel bioreducible and pH-responsive magnetic nanohydrogel based on $\hat{l}^2$ -cyclodextrin for chemo/hyperthermia therapy of cancer. Carbohydrate Polymers, 2021, 252, 117229.                                                         | 10.2 | 61        |
| 14 | Stimuli-responsive natural gums-based drug delivery systems for cancer treatment. Carbohydrate<br>Polymers, 2021, 254, 117422.                                                                                                              | 10.2 | 28        |
| 15 | Tragacanth gumâ€based <scp>pH</scp> â€responsive magnetic hydrogels for "smart―chemo/hyperthermia<br>therapy of solid tumors. Polymers for Advanced Technologies, 2021, 32, 262-271.                                                        | 3.2  | 26        |
| 16 | Electrically Conductive Nanofibers Composed of Chitosan-grafted Polythiophene and<br>Poly(ε-caprolactone) as Tissue Engineering Scaffold. Fibers and Polymers, 2021, 22, 49-58.                                                             | 2.1  | 5         |
| 17 | A bioâ€inspired gelatinâ€based <scp>pH</scp> ―and thermalâ€sensitive magnetic hydrogel for in vitro<br>chemo/hyperthermia treatment of breast cancer cells. Journal of Applied Polymer Science, 2021, 138,<br>50578.                        | 2.6  | 31        |
| 18 | Pseudohomogeneous metallic catalyst based on tungstate-decorated amphiphilic carbon quantum dots for selective oxidative scission of alkenes to aldehyde. Scientific Reports, 2021, 11, 4411.                                               | 3.3  | 30        |

| #  | Article                                                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Thermal-responsive magnetic hydrogels based on Tragacanth gum for delivery of anticancer drugs.<br>Journal of Polymer Research, 2021, 28, 1.                                                                                                                               | 2.4  | 14        |
| 20 | Multi-stimuli-responsive magnetic hydrogel based on Tragacanth gum as a de novo nanosystem for targeted chemo/hyperthermia treatment of cancer. Journal of Materials Research, 2021, 36, 858-869.                                                                          | 2.6  | 23        |
| 21 | Microfibers nanocomposite based on polyacrylonitrile fibers/bismuth oxide nanoparticles as Xâ€ray shielding material. Journal of Applied Polymer Science, 2021, 138, 50755.                                                                                                | 2.6  | 12        |
| 22 | Preclinical studies conducted on nanozyme antioxidants: shortcomings and challenges based on USÂFDA regulations. Nanomedicine, 2021, 16, 1133-1151.                                                                                                                        | 3.3  | 11        |
| 23 | Tarkhineh as a new microencapsulation matrix improves the quality and sensory characteristics of probiotic Lactococcus lactis KUMS-T18 enriched potato chips. Scientific Reports, 2021, 11, 12599.                                                                         | 3.3  | 43        |
| 24 | Advanced Bioresponsive Multitasking Hydrogels in the New Era of Biomedicine. Advanced Functional<br>Materials, 2021, 31, 2104123.                                                                                                                                          | 14.9 | 30        |
| 25 | A Novel pH-Responsive Magnetic Nanosystem for Delivery of Anticancer Drugs. Polymer Science - Series<br>B, 2021, 63, 408-417.                                                                                                                                              | 0.8  | 1         |
| 26 | Bioinspired hydrogels build a bridge from bench to bedside. Nano Today, 2021, 39, 101157.                                                                                                                                                                                  | 11.9 | 28        |
| 27 | Radiolabeled carbon-based nanostructures: New radiopharmaceuticals for cancer therapy?.<br>Coordination Chemistry Reviews, 2021, 440, 213974.                                                                                                                              | 18.8 | 22        |
| 28 | Preparation, physicochemical characterization, and anti-proliferative properties of Lawsone-loaded solid lipid nanoparticles. Chemistry and Physics of Lipids, 2021, 239, 105123.                                                                                          | 3.2  | 17        |
| 29 | Hyaluronic acid-based drug nanocarriers as a novel drug delivery system for cancer chemotherapy: A<br>systematic review. DARU, Journal of Pharmaceutical Sciences, 2021, 29, 439-447.                                                                                      | 2.0  | 20        |
| 30 | Fabrication of a dual stimuli-responsive magnetic nanohydrogel for delivery of anticancer drugs.<br>Drug Development and Industrial Pharmacy, 2021, 47, 1166-1174.                                                                                                         | 2.0  | 5         |
| 31 | Roles of miRNAs in Colorectal Cancer: Therapeutic Implications and Clinical Opportunities. Advanced<br>Pharmaceutical Bulletin, 2021, 11, 233-247.                                                                                                                         | 1.4  | 4         |
| 32 | Modification of thermoplastic polyurethane through the grafting of well-defined polystyrene and preparation of its polymer/clay nanocomposite. Polymer Bulletin, 2020, 77, 1107-1120.                                                                                      | 3.3  | 11        |
| 33 | A novel bio-inspired conductive, biocompatible, and adhesive terpolymer based on polyaniline,<br>polydopamine, and polylactide as scaffolding biomaterial for tissue engineering application.<br>International Journal of Biological Macromolecules, 2020, 147, 1174-1184. | 7.5  | 56        |
| 34 | Chemically Modified Natural Polymer-Based Theranostic Nanomedicines: Are They the Golden Gate toward a <i>de Novo</i> Clinical Approach against Cancer?. ACS Biomaterials Science and Engineering, 2020, 6, 134-166.                                                       | 5.2  | 32        |
| 35 | <p>A Review on the Biodistribution, Pharmacokinetics and Toxicity of Bismuth-Based<br/>Nanomaterials</p> . International Journal of Nanomedicine, 2020, Volume 15, 7079-7096.                                                                                              | 6.7  | 23        |
| 36 | A Thermal-Responsive Y-Shaped Miktoarm Amphiphilic Block Copolymer Composed of<br>Poly(Îμ-caprolactone) and Poly(N-isopropylacrylamide) as a Nano-micellar Carrier for Anti-cancer<br>Drugs. Polymer Science - Series B, 2020, 62, 540-549.                                | 0.8  | 6         |

| #  | Article                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | A novel multi-stimuli-responsive theranostic nanomedicine based on Fe3O4@Au nanoparticles against cancer. Drug Development and Industrial Pharmacy, 2020, 46, 1832-1843.                                                               | 2.0  | 16        |
| 38 | Human plasma protein corona decreases the toxicity of pillar-layer metal organic framework.<br>Scientific Reports, 2020, 10, 14569.                                                                                                    | 3.3  | 19        |
| 39 | Potential Applications of Advanced Nano/Hydrogels in Biomedicine: Static, Dynamic, Multiâ€6tage, and<br>Bioinspired. Advanced Functional Materials, 2020, 30, 2004098.                                                                 | 14.9 | 65        |
| 40 | A dual stimuli-responsive star-shaped nanocarrier as de novo drug delivery system for chemotherapy<br>of solid tumors. Journal of Polymer Research, 2020, 27, 1.                                                                       | 2.4  | 9         |
| 41 | Biomaterials in Valvular Heart Diseases. Frontiers in Bioengineering and Biotechnology, 2020, 8, 529244.                                                                                                                               | 4.1  | 20        |
| 42 | Dual stimuli-responsive polymeric hollow nanocapsules as "smart―drug delivery system against<br>cancer. Polymer-Plastics Technology and Materials, 2020, 59, 1492-1504.                                                                | 1.3  | 15        |
| 43 | Conducting polymer-based electrically conductive adhesive materials: design, fabrication, properties, and applications. Journal of Materials Science: Materials in Electronics, 2020, 31, 10947-10961.                                 | 2.2  | 30        |
| 44 | Horizontal Gene Transfer: From Evolutionary Flexibility to Disease Progression. Frontiers in Cell and<br>Developmental Biology, 2020, 8, 229.                                                                                          | 3.7  | 80        |
| 45 | Naturally occurring biological macromolecules-based hydrogels: Potential biomaterials for<br>peripheral nerve regeneration. International Journal of Biological Macromolecules, 2020, 154, 795-817.                                    | 7.5  | 79        |
| 46 | Amphiphilic Carbon Quantum Dots as a Bridge to a Pseudohomogeneous Catalyst for Selective<br>Oxidative Cracking of Alkenes to Aldehydes: A Nonmetallic Oxidation System. ACS Applied Materials<br>& Interfaces, 2020, 12, 31360-31371. | 8.0  | 22        |
| 47 | Natural polymers-based light-induced hydrogels: Promising biomaterials for biomedical applications.<br>Coordination Chemistry Reviews, 2020, 420, 213432.                                                                              | 18.8 | 116       |
| 48 | PEGylated hollow pHâ€responsive polymeric nanocapsules for controlled drug delivery. Polymer<br>International, 2020, 69, 519-527.                                                                                                      | 3.1  | 35        |
| 49 | Toxicological profile of lipid-based nanostructures: are they considered as completely safe nanocarriers?. Critical Reviews in Toxicology, 2020, 50, 148-176.                                                                          | 3.9  | 31        |
| 50 | Genotoxicity assessment of carbon-based nanomaterials; Have their unique physicochemical<br>properties made them double-edged swords?. Mutation Research - Reviews in Mutation Research, 2020,<br>783, 108296.                         | 5.5  | 36        |
| 51 | <p>Biomedical Applications of Zeolitic Nanoparticles, with an Emphasis on Medical<br/>Interventions</p> . International Journal of Nanomedicine, 2020, Volume 15, 363-386.                                                             | 6.7  | 34        |
| 52 | A bio-inspired magnetic natural hydrogel containing gelatin and alginate as a drug delivery system for<br>cancer chemotherapy. International Journal of Biological Macromolecules, 2020, 156, 438-445.                                 | 7.5  | 102       |
| 53 | Tumor microenvironment complexity and therapeutic implications at a glance. Cell Communication and Signaling, 2020, 18, 59.                                                                                                            | 6.5  | 909       |
| 54 | Iron oxide/gold nanoparticlesâ€decorated reduced graphene oxide nanohybrid as the<br>thermoâ€radiotherapy agent. IET Nanobiotechnology, 2020, 14, 428-432.                                                                             | 3.8  | 13        |

| #  | Article                                                                                                                                                                                                                                   | IF              | CITATIONS    |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|
| 55 | A de novo theranostic nanomedicine composed of PEGylated graphene oxide and gold nanoparticles for cancer therapy. Journal of Materials Research, 2020, 35, 430-441.                                                                      | 2.6             | 33           |
| 56 | Cell-Penetrating Peptides: As a Promising Theranostics Strategy to Circumvent the Blood-Brain Barrier for CNS Diseases. Current Drug Delivery, 2020, 17, 375-386.                                                                         | 1.6             | 20           |
| 57 | lonic Liquid-Functionalized Titanomagnetite Nanoparticles as Efficient and Recyclable Catalyst for<br>Green Synthesis of 2,3-Dihydroquinazolin-4(1H)-ones. Chemistry and Chemical Technology, 2020, 14,<br>62-69.                         | 1.1             | 2            |
| 58 | A Novel Stimuli-Responsive Magnetite Nanocomposite as De Novo Drug Delivery System.<br>Polymer-Plastics Technology and Materials, 2019, 58, 405-418.                                                                                      | 1.3             | 5            |
| 59 | Graphene quantum dots coated on quartz sand as efficient and lowâ€cost adsorbent for removal of Hg <sup>2+</sup> and Pb <sup>2+</sup> from aqueous solutions. Environmental Progress and Sustainable Energy, 2019, 38, S24.               | 2.3             | 21           |
| 60 | Enhanced thrombolysis using tissue plasminogen activator (tPA)-loaded PEGylated PLGA nanoparticles<br>for ischemic stroke. Journal of Drug Delivery Science and Technology, 2019, 53, 101165.                                             | 3.0             | 27           |
| 61 | Dynamic DNA nanostructures in biomedicine: Beauty, utility and limits. Journal of Controlled Release, 2019, 315, 166-185.                                                                                                                 | 9.9             | 31           |
| 62 | <p>Static DNA Nanostructures For Cancer Theranostics: Recent Progress In Design And<br/>Applications</p> . Nanotechnology, Science and Applications, 2019, Volume 12, 25-46.                                                              | 4.6             | 30           |
| 63 | Fe3-xTixO4-supported sulfamic acid nanoparticles: New magnetic nanocatalyst for the synthesis of hexahydroquinolines. Journal of Organometallic Chemistry, 2019, 895, 55-63.                                                              | 1.8             | 12           |
| 64 | A de novo formulation of metformin using chitosanâ€based nanomicelles for potential diabetes therapy.<br>Journal of Applied Polymer Science, 2019, 136, 48037.                                                                            | 2.6             | 8            |
| 65 | A novel epoxy-based resin nanocomposite: Co-curing of epoxidized novolac and epoxidized poly(vinyl) Tj ETQq1                                                                                                                              | 1 0,7843<br>1.6 | 14 rgBT /Ove |
| 66 | Amine-functionalized carbon nanotubes as curing agent for polystyrene-modified novolac epoxy resin:<br>synthesis, characterization and possible applications. Applied Physics A: Materials Science and<br>Processing, 2019, 125, 1.       | 2.3             | 7            |
| 67 | Scaffolding polymeric biomaterials: Are naturally occurring biological macromolecules more appropriate for tissue engineering?. International Journal of Biological Macromolecules, 2019, 134, 673-694.                                   | 7.5             | 145          |
| 68 | Polystyreneâ€modified novolac epoxy resin/clay nanocomposite: Synthesis, and characterization.<br>Polymers for Advanced Technologies, 2019, 30, 1484-1492.                                                                                | 3.2             | 9            |
| 69 | Nitroxide-mediated graft copolymerization of styrene from cellulose and its polymer/montmorillonite nanocomposite. Journal of Elastomers and Plastics, 2019, 51, 473-489.                                                                 | 1.5             | 8            |
| 70 | Electrically conductive adhesive based on novolac-grafted polyaniline: synthesis and characterization. Journal of Materials Science: Materials in Electronics, 2019, 30, 2821-2828.                                                       | 2.2             | 8            |
| 71 | Electrically conductive nanofibrous scaffold composed of poly(ethylene glycol)-modified<br>polypyrrole and poly(ε-caprolactone) for tissue engineering applications. Materials Science and<br>Engineering C, 2019, 98, 300-310.           | 7.3             | 39           |
| 72 | Nanostructured starâ€shaped polythiophene dendrimer as a highly efficient sorbent for<br>microextraction in packed syringe for HPLC analysis of the Clofentezine in milk and juice samples.<br>Separation Science Plus, 2018, 1, 202-208. | 0.6             | 5            |

| #  | Article                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | PEGylated graphene oxide/Fe3O4 nanocomposite: Synthesis, characterization, and evaluation of its performance as de novo drug delivery nanosystem. Bio-Medical Materials and Engineering, 2018, 29, 177-190.                                    | 0.6 | 30        |
| 74 | Intelligent anticancer drug delivery performances of two poly( <i>N</i> -isopropylacrylamide)-based magnetite nanohydrogels. Drug Development and Industrial Pharmacy, 2018, 44, 1254-1261.                                                    | 2.0 | 17        |
| 75 | The magnetic graphene-based nanocomposite: An efficient anticancer delivery system. AIP Conference<br>Proceedings, 2018, , .                                                                                                                   | 0.4 | 2         |
| 76 | A star-shaped polythiophene dendrimer coating for solid-phase microextraction of triazole agrochemicals. Mikrochimica Acta, 2018, 185, 179.                                                                                                    | 5.0 | 20        |
| 77 | Novel strategies for the synthesis of hydroxylated and carboxylated polystyrenes. Journal of Polymer<br>Research, 2018, 25, 1.                                                                                                                 | 2.4 | 16        |
| 78 | Fabrication of novel dental nanocomposites and investigation their physicochemical and biological properties. Materials Research Express, 2018, 5, 035406.                                                                                     | 1.6 | 11        |
| 79 | Sulfamicâ€Acidâ€Functionalized Fe <sub>3â€x</sub> Ti <sub>x</sub> O <sub>4</sub> Nanoparticles as Novel<br>Magnetic Catalyst for the Synthesis of Hexahydroquinolines under Solventâ€Free Condition.<br>ChemistrySelect, 2018, 3, 13722-13728. | 1.5 | 15        |
| 80 | Synthesis and characterization of a pH―and glucoseâ€responsive triblock copolymer via RAFT technique<br>and its conjugation with gold nanoparticles for biomedical applications. Polymers for Advanced<br>Technologies, 2018, 29, 3097-3105.   | 3.2 | 17        |
| 81 | A novel gold-based stimuli-responsive theranostic nanomedicine for chemo-photothermal therapy of solid tumors. Materials Science and Engineering C, 2018, 93, 880-889.                                                                         | 7.3 | 32        |
| 82 | Novel dental nanocomposites: fabrication and investigation of their physicochemical, mechanical and biological properties. Bulletin of Materials Science, 2018, 41, 1.                                                                         | 1.7 | 2         |
| 83 | A starch-based stimuli-responsive magnetite nanohydrogel as de novo drug delivery system.<br>International Journal of Biological Macromolecules, 2018, 117, 418-426.                                                                           | 7.5 | 65        |
| 84 | A facile and efficient strategy for the functionalization of multiple-walled carbon nanotubes using<br>well-defined polypropylene-grafted polystyrene. Applied Physics A: Materials Science and Processing,<br>2018, 124, 1.                   | 2.3 | 13        |
| 85 | Chitosan-grafted-poly(methacrylic acid)/graphene oxide nanocomposite as a pH-responsive de novo<br>cancer chemotherapy nanosystem. International Journal of Biological Macromolecules, 2018, 118,<br>1871-1879.                                | 7.5 | 70        |
| 86 | Synthesis and characterization of a novel stimuliâ€responsive magnetite nanohydrogel based on<br>poly(ethylene glycol) and poly( <i>N</i> â€isopropylacrylamide) as drug carrier. Journal of Applied<br>Polymer Science, 2018, 135, 46657.     | 2.6 | 23        |
| 87 | Multistimuli responsive polymeric nanosystems for theranostic applications. International Journal of<br>Polymeric Materials and Polymeric Biomaterials, 2017, 66, 38-47.                                                                       | 3.4 | 27        |
| 88 | Soluble and electrically conductive polyanilineâ€modified polymers: Incorporation of biocompatible<br>polymeric chains through ATRP technique. Journal of Applied Polymer Science, 2017, 134, .                                                | 2.6 | 13        |
| 89 | A novel starch-based stimuli-responsive nanosystem for theranostic applications. International<br>Journal of Biological Macromolecules, 2017, 97, 654-661.                                                                                     | 7.5 | 48        |
| 90 | Synthesis and characterization of potential multifunctional methacrylate-based dental monomers.<br>Research on Chemical Intermediates, 2017, 43, 5707-5722.                                                                                    | 2.7 | 9         |

| #   | Article                                                                                                                                                                                                                                                                | IF              | CITATIONS          |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------|
| 91  | Cellulose/polyaniline derivatives nanocomposites: Synthesis and their performance in removal of<br>anionic dyes from simulated industrial effluents. Journal of Applied Polymer Science, 2017, 134, 45352.                                                             | 2.6             | 29                 |
| 92  | A novel dual stimuli-responsive thiol-end-capped ABC triblock copolymer: synthesis via reversible<br>addition-fragmentation chain transfer technique, and investigation of its self-assembly behavior.<br>Polymer International, 2017, 66, 1651-1661.                  | 3.1             | 34                 |
| 93  | Development and validation of a quantitative assay for the determination of cinacalcet and its main metabolites in human plasma using RP-HPLC method. Microchemical Journal, 2017, 130, 377-383.                                                                       | 4.5             | 4                  |
| 94  | A Novel Strategy for Synthesis of Polystyrene/Fe <sub>3</sub> O <sub>4</sub> Nanocomposite: RAFT<br>Polymerization, Functionalization, and Coordination Techniques. Polymer-Plastics Technology and<br>Engineering, 2017, 56, 873-882.                                 | 1.9             | 16                 |
| 95  | Novel dual stimuli-responsive ABC triblock copolymer: RAFT synthesis, "schizophrenic―micellization,<br>and its performance as an anticancer drug delivery nanosystem. Journal of Colloid and Interface<br>Science, 2017, 488, 282-293.                                 | 9.4             | 62                 |
| 96  | Novel â€~schizophrenic' diblock copolymer synthesized via RAFT polymerization: poly(2-succinyloxyethyl) Tj E<br>Monomers and Polymers, 2017, 20, 190-200.                                                                                                              | TQq0000         | rgBT /Overlo<br>34 |
| 97  | Grafting of aniline derivatives onto chitosan and their applications for removal of reactive dyes from industrial effluents. International Journal of Biological Macromolecules, 2017, 95, 393-403.                                                                    | 7.5             | 55                 |
| 98  | Development of novel electrically conductive scaffold based on hyperbranched polyester and<br>polythiophene for tissue engineering applications. Journal of Biomedical Materials Research - Part A,<br>2016, 104, 2673-2684.                                           | 4.0             | 40                 |
| 99  | Novel nanostructured star-shaped polythiophene, and its electrospun nanofibers with gelatin.<br>Journal of Polymer Research, 2016, 23, 1.                                                                                                                              | 2.4             | 14                 |
| 100 | Grafting of poly[(methyl methacrylate)- block -styrene] onto cellulose via nitroxide-mediated polymerization, and its polymer/clay nanocomposite. Carbohydrate Polymers, 2016, 152, 297-305.                                                                           | 10.2            | 54                 |
| 101 | Novel Strategy for Anhydride-Functionalization of Poly(Vinyl Chloride): Synthesis and Characterization. Polymer-Plastics Technology and Engineering, 2016, 55, 1357-1364.                                                                                              | 1.9             | 3                  |
| 102 | Functional dendritic compounds: potential prospective candidates for dental restorative materials and in situ re-mineralization of human tooth enamel. RSC Advances, 2016, 6, 43127-43146.                                                                             | 3.6             | 24                 |
| 103 | Chemical and electrochemical grafting of polythiophene onto poly(methyl methacrylate), and its<br>electrospun nanofibers with gelatin. Journal of Materials Science: Materials in Electronics, 2016, 27,<br>12803-12812.                                               | 2.2             | 12                 |
| 104 | Novel nanofibrous electrically conductive scaffolds based on poly(ethylene glycol)s-modified<br>polythiophene and poly(ε-caprolactone) for tissue engineering applications. Polymer, 2016, 107, 177-190.                                                               | 3.8             | 39                 |
| 105 | Surface functionalization of graphene oxide with poly(2-hydroxyethyl) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf<br>A: Materials Science and Processing, 2016, 122, 1.                                                                                                   | 50 187 T<br>2.3 | d (methacryl<br>42 |
| 106 | Electrically conductive nanofibrous scaffolds based on poly(ethylene glycol)s-modified polyaniline<br>and poly(lµ-caprolactone) for tissue engineering applications. RSC Advances, 2016, 6, 105371-105386.                                                             | 3.6             | 28                 |
| 107 | A novel strategy for spectrophotometric simultaneous determination of amitriptyline and nortriptyline based on derivation with a quinonoid compound in serum samples. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2016, 168, 235-243.       | 3.9             | 23                 |
| 108 | Separation and quantitative determination of cinacalcet metabolites in urine sample using RP-HPLC after derivation with a fluorescent labeling reagent. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1027, 214-220. | 2.3             | 5                  |

| #   | Article                                                                                                                                                                                                                        | IF              | CITATIONS    |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|
| 109 | Chemical and electrochemical grafting of polyaniline onto poly(vinyl chloride): synthesis,<br>characterization, and materials properties. Polymers for Advanced Technologies, 2016, 27, 1056-1063.                             | 3.2             | 15           |
| 110 | Nanostructured starâ€shaped polythiophene with tannic acid core: Synthesis, characterization, and its physicochemical properties. Journal of Applied Polymer Science, 2016, 133, .                                             | 2.6             | 9            |
| 111 | Chemical and electrochemical grafting of polythiophene onto poly(vinyl chloride): synthesis,<br>characterization, and materials properties. Journal of Solid State Electrochemistry, 2016, 20, 489-497.                        | 2.5             | 13           |
| 112 | Conducting poly(vinyl chloride)-graft-polythiophene: synthesis, characterization, and materials properties. Journal of Materials Science: Materials in Electronics, 2016, 27, 2267-2275.                                       | 2.2             | 10           |
| 113 | Novel three-dimensional, conducting, biocompatible, porous, and elastic polyaniline-based scaffolds for regenerative therapies. RSC Advances, 2016, 6, 19437-19451.                                                            | 3.6             | 42           |
| 114 | Chemical and electrochemical grafting of polythiophene onto polystyrene synthesized via †living'<br>anionic polymerization. New Journal of Chemistry, 2016, 40, 2233-2242.                                                     | 2.8             | 15           |
| 115 | Star-like nanostructured polyaniline and polyanisidine prepared from <scp>d</scp> -glucose: synthesis, characterization, and properties. RSC Advances, 2015, 5, 21197-21205.                                                   | 3.6             | 21           |
| 116 | Electrically conductive nanocomposite adhesives based on epoxy or chloroprene containing<br>polyaniline, and carbon nanotubes. Journal of Materials Science: Materials in Electronics, 2015, 26,<br>6057-6067.                 | 2.2             | 16           |
| 117 | Novel nanostructured star-shaped polyaniline derivatives and their electrospun nanofibers with gelatin. RSC Advances, 2015, 5, 107680-107693.                                                                                  | 3.6             | 23           |
| 118 | Multi-walled carbon nanotubes-g-[poly(ethylene glycol)-b-poly(ε-caprolactone)]: synthesis,<br>characterization, and properties. Journal of Polymer Research, 2015, 22, 1.                                                      | 2.4             | 37           |
| 119 | Chemical and electrochemical grafting of polypyrrole onto thiophene-functionalized polystyrene macromonomer. Materials Science in Semiconductor Processing, 2015, 31, 463-470.                                                 | 4.0             | 18           |
| 120 | Functionalized multiwalled carbon nanotubes as reinforcing agents for poly(vinyl alcohol) and poly(vinyl alcohol)/starch nanocomposites: synthesis, characterization and properties. Polymer International, 2015, 64, 689-695. | 3.1             | 27           |
| 121 | Nanostructured poly(2,2′-bithiophene- <i>co</i> -3,4-ethylenedioxythiophene). High Performance<br>Polymers, 2015, 27, 161-170.                                                                                                 | 1.8             | 12           |
| 122 | Polystyrene-graft-poly(2,2′-bithiophene): synthesis, characterization, and properties. Journal of<br>Materials Science: Materials in Electronics, 2015, 26, 2887-2896.                                                         | 2.2             | 11           |
| 123 | AB <sub>2</sub> Y-shaped miktoarm star conductive polyaniline-modified poly(ethylene glycol) and its electrospun nanofiber blend with poly(ε-caprolactone). RSC Advances, 2015, 5, 36715-36726.                                | 3.6             | 31           |
| 124 | Modification of polythiophene by the incorporation of processable polymeric chains: Recent progress in synthesis and applications. Progress in Polymer Science, 2015, 47, 26-69.                                               | 24.7            | 120          |
| 125 | In situ chemical oxidative graft polymerization of aniline from phenylamine end-caped poly(ethylene) Tj ETQq1 1                                                                                                                | 0.784314<br>3.6 | · rgBT /Over |
| 126 | Determination of losartan potassium in the presence of hydrochlorothiazide via a combination of<br>magnetic solid phase extraction and fluorometry techniques in urine samples. RSC Advances, 2015, 5,<br>102895-102903.       | 3.6             | 23           |

| #   | Article                                                                                                                                                                                                     | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Graft copolymerization of thiophene onto polystyrene synthesized via nitroxide-mediated<br>polymerization and its polymer â^` clay nanocomposite. Polymer International, 2014, 63, 402-412.                 | 3.1  | 31        |
| 128 | In situ chemical oxidative graft polymerization of thiophene derivatives from multi-walled carbon nanotubes. Journal of Polymer Research, 2014, 21, 1.                                                      | 2.4  | 21        |
| 129 | Synthesis and characterization of polystyrene-graft-polythiophene via a combination of atom transfer radical polymerization and Grignard reaction. RSC Advances, 2014, 4, 16792-16802.                      | 3.6  | 30        |
| 130 | Recent progress in the chemical modification of syndiotactic polystyrene. Polymer Chemistry, 2014, 5, 2663-2690.                                                                                            | 3.9  | 60        |
| 131 | Conductive polymers/zeolite (nano-)composites: under-exploited materials. RSC Advances, 2014, 4, 33935-33954.                                                                                               | 3.6  | 44        |
| 132 | Synthesis of conductive polyaniline-modified polymers via a combination of nitroxide-mediated polymerization and "click chemistry― RSC Advances, 2014, 4, 28653-28663.                                      | 3.6  | 37        |
| 133 | Synthesis and characterization of novel diglycidyl methacrylate-based macromonomers on isosorbide for dental composites. Macromolecular Research, 2013, 21, 427-434.                                        | 2.4  | 15        |
| 134 | Recent progress in chemical modification of polyaniline. Progress in Polymer Science, 2013, 38, 1287-1306.                                                                                                  | 24.7 | 261       |
| 135 | Synthesis and Characterization of Syndiotactic Polystyrene- <i>graft</i> -poly(methyl methacrylate) via<br>Free Radical Polymerization. Polymer-Plastics Technology and Engineering, 2012, 51, 514-520.     | 1.9  | 8         |
| 136 | Chemical modification of polyaniline by N-grafting of polystyrenic chains synthesized via<br>nitroxide-mediated polymerization. Journal of the Brazilian Chemical Society, 2012, 23, 1008-1017.             | 0.6  | 31        |
| 137 | Synthesis and characterization of a terpolymer derived from styrene, methyl styrene, and polyaniline and its organoclay nanocomposite. Journal of Applied Polymer Science, 2012, 125, E131.                 | 2.6  | 26        |
| 138 | Synthesis and characterization of an exfoliated modified syndiotactic polystyrene/Mg–Al-layered double-hydroxide nanocomposite. Polymer Journal, 2011, 43, 186-193.                                         | 2.7  | 32        |
| 139 | Synthesis and characterization of novel type poly (4-chloromethyl styrene-grft-4-vinylpyridine)/TiO2 nanocomposite via nitroxide-mediated radical polymerization. Polymer, 2011, 52, 4760-4769.             | 3.8  | 38        |
| 140 | Poly(4-Chloromethyl Styrene-g-4-Vinylpyridine)/TiO2 Thin Films as Templates for the Synthesis of<br>Polypyrrole in the Nanometer-Sized Domain. Designed Monomers and Polymers, 2011, 14, 433-444.           | 1.6  | 22        |
| 141 | Surface modification of montmorillonite with novel modifier and preparation of polystyrene/montmorillonite nanocomposite by in situ radical polymerization. Journal of Polymer Research, 2011, 18, 957-963. | 2.4  | 26        |
| 142 | Synthesis and characterization of well-defined poly (4-chloromethyl styrene-g-4-vinylpyridine)/TiO2<br>nanocomposite via ATRP technique. Journal of Polymer Research, 2011, 18, 1617-1624.                  | 2.4  | 22        |
| 143 | Modified syndiotactic polystyrene/montmorillonite nanocomposite: Synthesis, characterization, and properties. Macromolecular Research, 2011, 19, 998-1005.                                                  | 2.4  | 20        |
| 144 | Exfoliated syndiotactic polystyrene-graft-poly(methyl methacrylate)/montmorillonite nanocomposite<br>prepared by solvent blending. Polymer Journal, 2011, 43, 901-908.                                      | 2.7  | 23        |

| #   | Article                                                                                                                                                  | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Synthesis and Characterization of Conductive Polyaniline-Modified Polymers via Nitroxide Mediated<br>Radical Polymerization. Porrime, 2010, 34, 553-559. | 0.2 | 16        |