Frank Wendland

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/785889/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Checking the Plausibility of Modelled Nitrate Concentrations in the Leachate on Federal State Scale in Germany. Water (Switzerland), 2021, 13, 226.	2.7	14
2	Implementing a Statewide Deficit Analysis for Inland Surface Waters According to the Water Framework Directive—An Exemplary Application on Phosphorus Pollution in Schleswig-Holstein (Northern Germany). Water (Switzerland), 2020, 12, 1365.	2.7	3
3	Model-Based Analysis of Nitrate Concentration in the Leachate—The North Rhine-Westfalia Case Study, Germany. Water (Switzerland), 2020, 12, 550.	2.7	20
4	The analysis of nitrogen load and simulation uncertainty using SWAT in a catchment with paddy field in China. Water Science and Technology, 2019, 80, 806-816.	2.5	8
5	Hydrologic and Geochemical Research at Pinios Hydrologic Observatory: Initial Results. Vadose Zone Journal, 2018, 17, 1-16.	2.2	11
6	Impact of Climate Change on Irrigation Need and Groundwater Resources in Pinios Basin. Proceedings (mdpi), 2018, 2, .	0.2	2
7	Modeling groundwater recharge through rainfall in the Far-North region of Cameroon. Groundwater for Sustainable Development, 2017, 5, 118-130.	4.6	13
8	Simulation of terrestrial nitrogen fluxes in Mecklenburg-Vorpommern and scenario analyses how to reach N-quality targets for groundwater and the coastal waters. Environmental Earth Sciences, 2017, 76, 1.	2.7	19
9	Assessment of climate change impact in the hydrological regime of River Pinios Basin, central Greece. Desalination and Water Treatment, 2016, 57, 2256-2267.	1.0	15
10	Projected impact of climate change on irrigation needs and groundwater resources in the metropolitan area of Hamburg (Germany). Environmental Earth Sciences, 2016, 75, 1.	2.7	16
11	Sensitivity of mGROWA-simulated groundwater recharge to changes in soil and land use parameters in a Mediterranean environment and conclusions in view of ensemble-based climate impact simulations. Science of the Total Environment, 2016, 543, 937-951.	8.0	19
12	Simulation of future groundwater recharge using a climate model ensemble and SAR-image based soil parameter distributions — A case study in an intensively-used Mediterranean catchment. Science of the Total Environment, 2016, 543, 889-905.	8.0	19
13	Determination of spatially differentiated water balance components including groundwater recharge on the Federal State level – A case study using the mGROWA model in North Rhine-Westphalia (Germany). Journal of Hydrology: Regional Studies, 2015, 4, 294-312.	2.4	33
14	Quantification of Climate Change Impact on Regional Agricultural Irrigation and Groundwater Demand. Water Resources Management, 2015, 29, 3585-3600.	3.9	45
15	Model-based assessment of groundwater recharge in Slovenia. Environmental Earth Sciences, 2015, 74, 6177-6192.	2.7	11
16	Determination of nitrogen reduction levels necessary to reach groundwater quality targets in Slovenia. Journal of Environmental Sciences, 2014, 26, 1806-1817.	6.1	14
17	Distributed modelling of mean annual soil erosion and sediment delivery rates to surface waters. Catena, 2013, 102, 13-20.	5.0	37
18	Model Based Assessment of Nitrate Pollution of Water Resources on a Federal State Level for the Dimensioning of Agro-environmental Reduction Strategies. Water Resources Management, 2013, 27, 885-909.	3.9	29

FRANK WENDLAND

#	Article	IF	CITATIONS
19	Grid-based modelling of nutrient inputs from diffuse and point sources for the state of North Rhine-Westphalia (Germany) as a tool for river basin management according to EU-WFD. River Systems, 2013, 20, 213-229.	0.2	7
20	Development of a conceptual hydrogeological model for the evaluation of residence times of water in soil and groundwater: the state of Hesse case study, Germany. Environmental Earth Sciences, 2012, 67, 2239-2250.	2.7	8
21	Modelling Sediment Input to Surface Waters for German States with MEPhos: Methodology, Sensitivity and Uncertainty. Water Resources Management, 2012, 26, 165-184.	3.9	16
22	Sustainable use of water resources in Europe and the role of integrated modelling of phosphate fluxes. International Journal of Global Environmental Issues, 2010, 10, 172.	0.1	0
23	Forecasting the effects of EU policy measures on the nitrate pollution of groundwater and surface waters. Journal of Environmental Sciences, 2010, 22, 872-877.	6.1	18
24	A new method for creating maps of artificially drained areas in large river basins based on aerial photographs and geodata. Irrigation and Drainage, 2009, 58, 569-585.	1.7	20
25	Groundwater recharge rates for regional groundwater modelling: a case study using GROWA in the Lower Rhine lignite mining area, Germany. Hydrogeology Journal, 2009, 17, 2049-2060.	2.1	13
26	Determination of nitrogen reduction levels necessary to reach groundwater quality targets in large river basins: the Weser basin case study, Germany. Nutrient Cycling in Agroecosystems, 2009, 85, 63-78.	2.2	23
27	Modelling phosphorus inputs from agricultural sources and urban areas in river basins. Environmental Geology, 2009, 57, 183-193.	1.2	16
28	Aerial photograph-based delineation of artificially drained areas as a basis for water balance and phosphorus modelling in large river basins. Physics and Chemistry of the Earth, 2009, 34, 552-564.	2.9	15
29	European aquifer typology: a practical framework for an overview of major groundwater composition at European scale. Environmental Geology, 2008, 55, 77-85.	1.2	73
30	Planning and implementation of nitrogen reduction measures in catchment areas based on a determination and ranking of target areas. Desalination, 2008, 226, 1-12.	8.2	24
31	Derivation of natural background levels and threshold values for groundwater bodies in the Upper Rhine Valley (France, Switzerland and Germany). Desalination, 2008, 226, 160-168.	8.2	53
32	Multispectral remotely sensed data in modelling the annual variability of nitrate concentrations in the leachate. Environmental Modelling and Software, 2008, 23, 1070-1081.	4.5	31
33	Modelling the water balance of a mesoscale catchment basin using remotely sensed land cover data. Journal of Hydrology, 2008, 353, 322-334.	5.4	53
34	Assessing necessary nutrient reduction for measurement planning in groundwater bodies. Water Science and Technology, 2008, 58, 2295-2302.	2.5	1
35	Area-differentiated modelling of P-fluxes in heterogeneous macroscale river basins. Water Science and Technology, 2007, 55, 123-131.	2.5	12
36	Water fluxes and diffuse nitrate pollution at river basin scale: coupling of agro-economic models and hydrological approaches. Water Science and Technology, 2007, 55, 133-142.	2.5	16

FRANK WENDLAND

#	Article	IF	CITATIONS
37	The influence of diffuse pollution on groundwater content patterns for the groundwater bodies of Germany. Water Science and Technology, 2007, 55, 97-105.	2.5	8
38	Integrated Agricultural and Hydrological Modeling within an Intensive Livestock Region. Advances in the Economics of Environmental Resources, 2007, , 113-142.	0.0	15
39	Model based impact analysis of policy options aiming at reducing diffuse pollution by agriculture—a case study for the river Ems and a sub-catchment of the Rhine. Environmental Modelling and Software, 2005, 20, 261-271.	4.5	43
40	Distributed modeling of groundwater recharge at the macroscale. Ecological Modelling, 2005, 187, 15-26.	2.5	54
41	Impact of nitrogen reduction measures on the nitrogen loads of the river Ems and Rhine (Germany). Physics and Chemistry of the Earth, 2005, 30, 527-541.	2.9	20
42	GIS-based determination of the mean long-term groundwater recharge in Lower Saxony. Environmental Geology, 2003, 45, 273-278.	1.2	18
43	Assessment of groundwater residence times in the pore aquifers of the River Elbe Basin. Environmental Geology, 2003, -1, 1-1.	1.2	1
44	Auswirkung von Bodenbedeckungsszenarien auf den Wasserhaushalt im Elbeeinzugsgebiet. , 2003, , 341-352.		0
45	The GROWA98 model for water balance analysis in large river basins—the river Elbe case study. Journal of Hydrology, 2002, 259, 152-162.	5.4	76
46	Modelling water fluxes for the analysis of diffuse pollution at the river basin scale. Hydrological Processes, 2000, 14, 1707-1723.	2.6	30
47	Modelling the nitrate flow in the ground-water provinces of the "old―federal states of the Federal Republic of Germany. Ecological Modelling, 1994, 75-76, 385-397.	2.5	13
48	Climate change impact assessment under data scarcity by hydrological and hydrodynamic modeling in Izmit Bay/Turkey. Environmental Research and Technology, 0, , .	0.7	1