
Venkat Reddy Chirasani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7858755/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mapping coâ€regulatory interactions among ligandâ€binding sites in ryanodine receptor 1. Proteins: Structure, Function and Bioinformatics, 2022, 90, 385-394.	2.6	2
2	Functional Gly297Ser Variant of the Physiological Dysglycemic Peptide Pancreastatin Is a Novel Risk Factor for Cardiometabolic Disorders. Diabetes, 2022, 71, 538-553.	0.6	4
3	Modifications to the Framework Regions Eliminate Chimeric Antigen Receptor Tonic Signaling. Cancer Immunology Research, 2021, 9, 441-453.	3.4	25
4	Functional and Structural Interactions between Ca2+, ATP and Caffeine Binding Sites of Skeletal Muscle Ryanodine Receptor (RyR1). Biophysical Journal, 2021, 120, 280a.	0.5	1
5	Activating Sphingosine-1-phospahte signaling in endothelial cells increases myosin light chain phosphorylation to decrease endothelial permeability thereby inhibiting cancer metastasis. Cancer Letters, 2021, 506, 107-119.	7.2	4
6	Divergent Mechanisms Activating RAS and Small GTPases Through Post-translational Modification. Frontiers in Molecular Biosciences, 2021, 8, 707439.	3.5	13
7	Identifying crucial E-protein residues responsible for unusual stability of Zika virus envelope. Biophysical Journal, 2021, 120, 4041-4054.	0.5	1
8	Structural and functional interactions between the Ca2+-,ÂATP-, and caffeine-binding sites of skeletal muscle ryanodine receptor (RyR1). Journal of Biological Chemistry, 2021, 297, 101040.	3.4	13
9	Two-input protein logic gate for computation in living cells. Nature Communications, 2021, 12, 6615.	12.8	20
10	Development of a Novel Multi-Isoform ALDH Inhibitor Effective as an Antimelanoma Agent. Molecular Cancer Therapeutics, 2020, 19, 447-459.	4.1	15
11	ASR490, a Small Molecule, Overrides Aberrant Expression of <i>Notch1</i> in Colorectal Cancer. Molecular Cancer Therapeutics, 2020, 19, 2422-2431.	4.1	4
12	Single-channel properties of skeletal muscle ryanodine receptor pore Δ4923FF4924 in two brothers with a lethal form of fetal akinesia. Cell Calcium, 2020, 87, 102182.	2.4	6
13	Molecular Basis of Differential Stability and Temperature Sensitivity of ZIKA versus Dengue Virus Protein Shells. Scientific Reports, 2020, 10, 8411.	3.3	8
14	A central core disease mutation in the Ca ²⁺ -binding site of skeletal muscle ryanodine receptor impairs single-channel regulation. American Journal of Physiology - Cell Physiology, 2019, 317, C358-C365.	4.6	22
15	Limits in accuracy and a strategy of RNA structure prediction using experimental information. Nucleic Acids Research, 2019, 47, 5563-5572.	14.5	10
16	Molecular mechanisms of heterogeneous oligomerization of huntingtin proteins. Scientific Reports, 2019, 9, 7615.	3.3	21
17	Mutation Analysis of the Calcium Binding Site of Skeletal Muscle Ryanodine Receptor Calcium Release Channel. Biophysical Journal, 2019, 116, 520a-521a.	0.5	0
18	How Zika Sustains High Temperatures: Insights from Atomic Simulations. Biophysical Journal, 2018, 114, 337a.	0.5	0

#	Article	IF	CITATIONS
19	G4941K substitution in the pore-lining S6 helix of the skeletal muscle ryanodine receptor increases RyR1 sensitivity to cytosolic and luminal Ca2+. Journal of Biological Chemistry, 2018, 293, 2015-2028.	3.4	10
20	Ca2+-mediated activation of the skeletal-muscle ryanodine receptor ion channel. Journal of Biological Chemistry, 2018, 293, 19501-19509.	3.4	27
21	How cholesteryl ester transfer protein can also be a potential triglyceride transporter. Scientific Reports, 2017, 7, 6159.	3.3	9
22	Decrease in the Generation of Amyloid- \hat{l}^2 Due to Salvianolic Acid B by Modulating BACE1 Activity. Current Alzheimer Research, 2017, 14, 1229-1237.	1.4	15
23	Mechanism of Inhibition of Cholesteryl Ester Transfer Protein by Small Molecule Inhibitors. Journal of Physical Chemistry B, 2016, 120, 8254-8263.	2.6	13
24	Structural Plasticity of Cholesteryl Ester Transfer Protein Assists the Lipid Transfer Activity. Journal of Biological Chemistry, 2016, 291, 19462-19473.	3.4	20
25	Catestatin Gly364Ser Variant Alters Systemic Blood Pressure and the Risk for Hypertension in Human Populations via Endothelial Nitric Oxide Pathway. Hypertension, 2016, 68, 334-347.	2.7	21
26	Regulation of intestinal SGLT1 by catestatin in hyperleptinemic type 2 diabetic mice. Laboratory Investigation, 2016, 96, 98-111.	3.7	29
27	Modulation of the mitochondrial voltage dependent anion channel (VDAC) by curcumin. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 151-158.	2.6	39
28	Molecular analyses of novel <i><scp>ASAH1</scp></i> mutations causing Farber lipogranulomatosis: analyses of exonic splicing enhancer inactivating mutation. Clinical Genetics, 2014, 86, 530-538.	2.0	19
29	Naturally Occurring Variants of the Dysglycemic Peptide Pancreastatin. Journal of Biological Chemistry, 2014, 289, 4455-4469.	3.4	19
30	A founder ectodysplasin A receptor (EDAR) mutation results in a high frequency of the autosomal recessive form of hypohidrotic ectodermal dysplasia in India. British Journal of Dermatology, 2012, 166, 819-829.	1.5	16