
## Ralph E Mistlberger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/785864/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Mice hypomorphic for Pitx3 show robust entrainment of circadian behavioral and metabolic rhythms<br>to scheduled feeding. Cell Reports, 2022, 38, 109865.                                                  | 2.9 | 5         |
| 2  | Thermoregulatory significance of immobility in the forced swim test. Physiology and Behavior, 2022, 247, 113709.                                                                                           | 1.0 | 3         |
| 3  | Circadian Rhythms. , 2022, , 1409-1418.                                                                                                                                                                    |     | 0         |
| 4  | Anticipation of Scheduled Feeding in BTBR Mice Reveals Independence and Interactions Between the Light- and Food-Entrainable Circadian Clocks. Frontiers in Integrative Neuroscience, 2022, 16, .          | 1.0 | 2         |
| 5  | Multiple entrained oscillator model of food anticipatory circadian rhythms. Scientific Reports, 2022, 12, .                                                                                                | 1.6 | 10        |
| 6  | Adjunctive and alternative treatments of circadian rhythm sleep disorders. , 2022, , .                                                                                                                     |     | 0         |
| 7  | Impact of COVID-19 social-distancing on sleep timing and duration during a university semester. PLoS ONE, 2021, 16, e0250793.                                                                              | 1.1 | 22        |
| 8  | Circadian misalignment impairs ability to suppress visual distractions. Psychophysiology, 2020, 57, e13485.                                                                                                | 1.2 | 5         |
| 9  | Light in the Senior Home: Effects of Dynamic and Individual Light Exposure on Sleep, Cognition, and<br>Well-Being. Clocks & Sleep, 2020, 2, 557-576.                                                       | 0.9 | 14        |
| 10 | Food anticipatory circadian rhythms in mice entrained to long or short day photoperiods. Physiology and Behavior, 2020, 222, 112939.                                                                       | 1.0 | 6         |
| 11 | Food as circadian time cue for appetitive behavior. F1000Research, 2020, 9, 61.                                                                                                                            | 0.8 | 42        |
| 12 | Delayed daily activity and reduced NREM slow-wave power in the APPswe/PS1dE9 mouse model of Alzheimer's disease. Neurobiology of Aging, 2019, 78, 74-86.                                                   | 1.5 | 24        |
| 13 | Sleep timing and duration in indigenous villages with and without electric lighting on Tanna Island,<br>Vanuatu. Scientific Reports, 2019, 9, 17278.                                                       | 1.6 | 29        |
| 14 | Midday meals do not impair mouse memory. Scientific Reports, 2018, 8, 17013.                                                                                                                               | 1.6 | 6         |
| 15 | Feeding Time Entrains the Olfactory Bulb Circadian Clock in Anosmic PER2::LUC Mice. Neuroscience, 2018, 393, 175-184.                                                                                      | 1.1 | 13        |
| 16 | Circadian Rhythms. , 2018, , 1-10.                                                                                                                                                                         |     | 0         |
| 17 | Driving home from the night shift: a bright light intervention study. Sleep Medicine, 2017, 30, 171-179.                                                                                                   | 0.8 | 17        |
| 18 | Organisational characteristics associated with shift work practices and potential opportunities for intervention: findings from a Canadian study. Occupational and Environmental Medicine, 2017, 74, 6-13. | 1.3 | 8         |

| #  | Article                                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Sleep and hippocampal neurogenesis: Implications for Alzheimer's disease. Frontiers in<br>Neuroendocrinology, 2017, 45, 35-52.                                                                                                                                          | 2.5 | 38        |
| 20 | Interval Timing Is Preserved Despite Circadian Desynchrony in Rats: Constant Light and Heavy Water<br>Studies. Journal of Biological Rhythms, 2017, 32, 295-308.                                                                                                        | 1.4 | 9         |
| 21 | Circadian time-place (or time-route) learning in rats with hippocampal lesions. Neurobiology of<br>Learning and Memory, 2016, 136, 236-243.                                                                                                                             | 1.0 | 2         |
| 22 | Neural activity in the suprachiasmatic circadian clock of nocturnal mice anticipating a daytime meal.<br>Neuroscience, 2016, 315, 91-103.                                                                                                                               | 1.1 | 17        |
| 23 | Ultrasonic vocalizations in rats anticipating circadian feeding schedules. Behavioural Brain Research, 2015, 284, 42-50.                                                                                                                                                | 1.2 | 16        |
| 24 | A sex difference in circadian food-anticipatory rhythms in mice: Interaction with dopamine D1 receptor knockout Behavioral Neuroscience, 2015, 129, 351-360.                                                                                                            | 0.6 | 21        |
| 25 | Activity is a slave to many masters. ELife, 2015, 4, e06351.                                                                                                                                                                                                            | 2.8 | 10        |
| 26 | Circadian Mechanisms of Food Anticipatory Rhythms in Rats Fed Once or Twice Daily: Clock Gene and<br>Endocrine Correlates. PLoS ONE, 2014, 9, e112451.                                                                                                                  | 1.1 | 30        |
| 27 | Circadian food anticipatory activity: Entrainment limits and scalar properties re-examined Behavioral<br>Neuroscience, 2014, 128, 689-702.                                                                                                                              | 0.6 | 11        |
| 28 | Regulation of circadian rhythms in mammals by behavioral arousal Behavioral Neuroscience, 2014, 128, 304-325.                                                                                                                                                           | 0.6 | 49        |
| 29 | Food anticipation in Bmal1-/- and AAV-Bmal1 rescued mice: a reply to Fuller et al. Journal of Circadian<br>Rhythms, 2014, 7, 11.                                                                                                                                        | 2.9 | 19        |
| 30 | Standards of evidence in chronobiology: critical review of a report that restoration of Bmal1<br>expression in the dorsomedial hypothalamus is sufficient to restore circadian food anticipatory<br>rhythms in Bmal1-/- mice. Journal of Circadian Rhythms, 2014, 7, 3. | 2.9 | 42        |
| 31 | The inhibitory effect of sleep deprivation on cell proliferation in the hippocampus of adult mice is<br>eliminated by corticosterone clamp combined with interleukin-1 receptor 1 knockout. Brain, Behavior,<br>and Immunity, 2014, 35, 182-188.                        | 2.0 | 20        |
| 32 | Behavioral and Neural Correlates of Acute and Scheduled Hunger in C57BL/6 Mice. PLoS ONE, 2014, 9, e95990.                                                                                                                                                              | 1.1 | 28        |
| 33 | Dopamine receptor 1 neurons in the dorsal striatum regulate food anticipatory circadian activity rhythms in mice. ELife, 2014, 3, e03781.                                                                                                                               | 2.8 | 83        |
| 34 | Photic and Pineal Modulation of Food Anticipatory Circadian Activity Rhythms in Rodents. PLoS ONE, 2013, 8, e81588.                                                                                                                                                     | 1.1 | 15        |
| 35 | Circadian adaptations to meal timing: neuroendocrine mechanisms. Frontiers in Neuroscience, 2013, 7,<br>185.                                                                                                                                                            | 1.4 | 130       |
| 36 | Dopaminergic Regulation of Circadian Food Anticipatory Activity Rhythms in the Rat. PLoS ONE, 2013, 8, e82381.                                                                                                                                                          | 1.1 | 33        |

| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Scheduled Daily Mating Induces Circadian Anticipatory Activity Rhythms in the Male Rat. PLoS ONE, 2012, 7, e40895.                                                                                                     | 1.1 | 15        |
| 38 | Circadian Clocks for All Meal-Times: Anticipation of 2 Daily Meals in Rats. PLoS ONE, 2012, 7, e31772.                                                                                                                 | 1.1 | 17        |
| 39 | Food Anticipatory Activity Behavior of Mice across a Wide Range of Circadian and Non-Circadian<br>Intervals. PLoS ONE, 2012, 7, e37992.                                                                                | 1.1 | 36        |
| 40 | Neurobiology of food anticipatory circadian rhythms. Physiology and Behavior, 2011, 104, 535-545.                                                                                                                      | 1.0 | 276       |
| 41 | Inhibition of hippocampal neurogenesis by sleep deprivation is independent of circadian disruption and melatonin suppression. Neuroscience, 2011, 193, 170-181.                                                        | 1.1 | 40        |
| 42 | Evidence for Time-of-Day Dependent Effect of Neurotoxic Dorsomedial Hypothalamic Lesions on Food<br>Anticipatory Circadian Rhythms in Rats. PLoS ONE, 2011, 6, e24187.                                                 | 1.1 | 41        |
| 43 | Circadian Rhythms in Mammals. , 2011, , 363-375.                                                                                                                                                                       |     | 9         |
| 44 | Entrainment of circadian clocks in mammals by arousal and food. Essays in Biochemistry, 2011, 49, 119-136.                                                                                                             | 2.1 | 88        |
| 45 | Enhanced Food Anticipatory Activity Associated with Enhanced Activation of Extrahypothalamic<br>Neural Pathways in Serotonin2C Receptor Null Mutant Mice. PLoS ONE, 2010, 5, e11802.                                   | 1.1 | 21        |
| 46 | Palatable Meal Anticipation in Mice. PLoS ONE, 2010, 5, e12903.                                                                                                                                                        | 1.1 | 50        |
| 47 | The dorsomedial hypothalamic nucleus is not necessary for foodâ€anticipatory circadian rhythms of behavior, temperature or clock gene expression in mice. European Journal of Neuroscience, 2009, 29, 1447-1460.       | 1.2 | 113       |
| 48 | Foodâ€anticipatory circadian rhythms: concepts and methods. European Journal of Neuroscience, 2009,<br>30, 1718-1729.                                                                                                  | 1.2 | 182       |
| 49 | New neurons in the adult brain: The role of sleep and consequences of sleep loss. Sleep Medicine Reviews, 2009, 13, 187-194.                                                                                           | 3.8 | 265       |
| 50 | Phenotyping Food Entrainment: Motion Sensors and Telemetry Are Equivalent. Journal of Biological<br>Rhythms, 2009, 24, 95-98.                                                                                          | 1.4 | 19        |
| 51 | Neural correlates of arousalâ€induced circadian clock resetting: hypocretin/orexin and the intergeniculate leaflet. European Journal of Neuroscience, 2008, 27, 828-835.                                               | 1.2 | 35        |
| 52 | A Prospective Study of Seasonal Variation in Shiftâ€Work Tolerance. Chronobiology International,<br>2008, 25, 455-470.                                                                                                 | 0.9 | 32        |
| 53 | Sleep deprivation can inhibit adult hippocampal neurogenesis independent of adrenal stress<br>hormones. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008,<br>294, R1693-R1703. | 0.9 | 103       |
| 54 | Comment on "Differential Rescue of Light- and Food-Entrainable Circadian Rhythms". Science, 2008, 322, 675-675.                                                                                                        | 6.0 | 53        |

| #  | Article                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | The Dorsomedial Hypothalamic Nucleus Is Not Necessary for the Expression of Circadian<br>Food-Anticipatory Activity in Rats. Journal of Biological Rhythms, 2007, 22, 467-478.                                                                      | 1.4 | 114       |
| 56 | Food Entrainment: Methodological Issues. Journal of Biological Rhythms, 2007, 22, 484-487.                                                                                                                                                          | 1.4 | 22        |
| 57 | The enigma of behavioral inputs to the circadian clock: A test of function using restraint. Physiology and Behavior, 2006, 87, 948-954.                                                                                                             | 1.0 | 8         |
| 58 | Circadian Rhythms: Perturbing a Food-Entrained Clock. Current Biology, 2006, 16, R968-R969.                                                                                                                                                         | 1.8 | 38        |
| 59 | Effects of Food Deprivation on Locomotor Activity, Plasma Glucose, and Circadian Clock Resetting in<br>Syrian Hamsters. Journal of Biological Rhythms, 2006, 21, 33-44.                                                                             | 1.4 | 11        |
| 60 | Modafinil [2-[(Diphenylmethyl)sulfinyl]acetamide] and Circadian Rhythms in Syrian Hamsters:<br>Assessment of the Chronobiotic Potential of a Novel Alerting Compound. Journal of Pharmacology<br>and Experimental Therapeutics, 2006, 317, 882-889. | 1.3 | 18        |
| 61 | Differential effects of constant light on circadian clock resetting by photic and nonphotic stimuli in<br>Syrian hamsters. Brain Research, 2005, 1059, 52-58.                                                                                       | 1.1 | 6         |
| 62 | Circadian regulation of sleep in mammals: Role of the suprachiasmatic nucleus. Brain Research<br>Reviews, 2005, 49, 429-454.                                                                                                                        | 9.1 | 272       |
| 63 | Nonphotic Entrainment in Humans?. Journal of Biological Rhythms, 2005, 20, 339-352.                                                                                                                                                                 | 1.4 | 210       |
| 64 | Circadian Rhythms in Mammals: Formal Properties and Environmental Influences. , 2005, , 321-334.                                                                                                                                                    |     | 23        |
| 65 | Short-term exposure to constant light promotes strong circadian phase-resetting responses to nonphotic stimuli in Syrian hamsters. European Journal of Neuroscience, 2004, 19, 2779-2790.                                                           | 1.2 | 39        |
| 66 | Social influences on mammalian circadian rhythms: animal and human studies. Biological Reviews, 2004, 79, 533-556.                                                                                                                                  | 4.7 | 317       |
| 67 | Adult hippocampal neurogenesis and voluntary running activity: Circadian and dose-dependent effects. Journal of Neuroscience Research, 2004, 76, 216-222.                                                                                           | 1.3 | 206       |
| 68 | Rapid Eye Movement Sleep induction by microinjection of the GABA-A antagonist bicuculline into the dorsal subcoeruleus area of the rat. Brain Research, 2003, 962, 68-77.                                                                           | 1.1 | 66        |
| 69 | Food- and light-entrained circadian rhythms in rats with hypocretin-2-saporin ablations of the lateral hypothalamus. Brain Research, 2003, 980, 161-168.                                                                                            | 1.1 | 44        |
| 70 | Response of the Mouse Circadian System to Serotonin 1A/2/7 Agonists in vivo: Surprisingly Little.<br>Journal of Biological Rhythms, 2003, 18, 145-158.                                                                                              | 1.4 | 72        |
| 71 | Circadian Clock Resetting by Sleep Deprivation without Exercise in Syrian Hamsters: Dark Pulses<br>Revisited. Journal of Biological Rhythms, 2002, 17, 227-237.                                                                                     | 1.4 | 43        |
| 72 | Activity-induced circadian clock resetting in the Syrian hamster: effects of melatonin. Neuroscience<br>Letters, 2002, 317, 5-8.                                                                                                                    | 1.0 | 2         |

| #  | Article                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Circadian rhythms of activity and drinking in mice lacking angiotensin II 1A receptors. Physiology and Behavior, 2001, 74, 457-464.                                                 | 1.0 | 8         |
| 74 | Food-entrained circadian rhythms in rats are insensitive to deuterium oxide. Brain Research, 2001, 919, 283-291.                                                                    | 1.1 | 17        |
| 75 | Sleep deprivation stimulates serotonin release in the suprachiasmatic nucleus. NeuroReport, 2000, 11, 1929-1932.                                                                    | 0.6 | 84        |
| 76 | 5-HT1A autoreceptor antagonist-induced 5-HT release in the hamster suprachiasmatic nuclei: effects on circadian clock resetting. Neuroscience Letters, 2000, 282, 97-100.           | 1.0 | 15        |
| 77 | Circadian blood pressure and heart rate rhythms in mice. American Journal of Physiology - Regulatory<br>Integrative and Comparative Physiology, 1999, 276, R500-R504.               | 0.9 | 62        |
| 78 | Circadian and Homeostatic Influences on Sleep in the Squirrel Monkey: Sleep after Sleep Deprivation.<br>Sleep, 1999, 22, 45-59.                                                     | 0.6 | 28        |
| 79 | Morphine-induced activity attenuates phase shifts to light in C57BL/6J mice. Brain Research, 1999, 829, 113-119.                                                                    | 1.1 | 22        |
| 80 | Neonatal monosodium glutamate alters circadian organization of feeding, food anticipatory activity<br>and photic masking in the rat. Brain Research, 1999, 842, 73-83.              | 1.1 | 47        |
| 81 | Enhanced Food-Anticipatory Circadian Rhythms in the Genetically Obese Zucker Rat. Physiology and Behavior, 1999, 66, 329-335.                                                       | 1.0 | 68        |
| 82 | Behavioral inhibition of light-induced circadian phase resetting is phase and serotonin dependent.<br>Brain Research, 1998, 786, 31-38.                                             | 1.1 | 80        |
| 83 | Serotonin antagonists do not attenuate activity-induced phase shifts of circadian rhythms in the<br>Syrian hamster. Brain Research, 1998, 813, 139-149.                             | 1.1 | 50        |
| 84 | Serotonin and feedback effects of behavioral activity on circadian rhythms in mice. Behavioural Brain<br>Research, 1998, 96, 93-99.                                                 | 1.2 | 45        |
| 85 | Phase Shifts to Refeeding in the Syrian Hamster Mediated by Running Activity. Physiology and Behavior, 1997, 61, 273-278.                                                           | 1.0 | 19        |
| 86 | Scheduled activity reorganizes circadian phase of Syrian hamsters under full and skeleton photoperiods. Behavioural Brain Research, 1997, 87, 127-137.                              | 1.2 | 29        |
| 87 | Sleep deprivation can attenuate light-induced phase shifts of circadian rhythms in hamsters.<br>Neuroscience Letters, 1997, 238, 5-8.                                               | 1.0 | 66        |
| 88 | Both Neuropeptide Y and Serotonin Are Necessary for Entrainment of Circadian Rhythms in Mice by<br>Daily Treadmill Running Schedules. Journal of Neuroscience, 1997, 17, 7974-7987. | 1.7 | 147       |
| 89 | Anticipation and entrainment to feeding time in intact and SCN-ablated C57BL/6j mice. Brain Research, 1997, 765, 273-282.                                                           | 1.1 | 111       |
| 90 | Entrainment and phase shifting of circadian rhythms in mice by forced treadmill running. Physiology<br>and Behavior, 1996, 60, 657-663.                                             | 1.0 | 119       |

| #   | Article                                                                                                                                                                     | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Discrimination of circadian phase in intact and suprachiasmatic nuclei-ablated rats. Brain Research, 1996, 739, 12-18.                                                      | 1.1 | 102       |
| 92  | Nonphotic Phase-Shifting and the Motivation to Run: Cold Exposure Reexamined. Journal of Biological Rhythms, 1996, 11, 208-215.                                             | 1.4 | 35        |
| 93  | Computational and entrainment models of circadian food-anticipatory activity: Evidence from non-24-hr feeding schedules Behavioral Neuroscience, 1995, 109, 790-798.        | 0.6 | 48        |
| 94  | Morphine phase-shifts circadian rhythms in mice. NeuroReport, 1995, 7, 209-212.                                                                                             | 0.6 | 50        |
| 95  | Circadian food-anticipatory activity: Formal models and physiological mechanisms. Neuroscience and<br>Biobehavioral Reviews, 1994, 18, 171-195.                             | 2.9 | 809       |
| 96  | Effects of scheduled food and water access on circadian rhythms of hamsters in constant light, dark,<br>and light:dark. Physiology and Behavior, 1993, 53, 509-516.         | 1.0 | 59        |
| 97  | Anticipatory Activity Rhythms under Daily Schedules of Water Access in the Rat. Journal of Biological Rhythms, 1992, 7, 149-160.                                            | 1.4 | 41        |
| 98  | Nonphotic entrainment of circadian activity rhythms in suprachiasmatic nuclei-ablated hamsters<br>Behavioral Neuroscience, 1992, 106, 192-202.                              | 0.6 | 45        |
| 99  | The limbic system and food-anticipatory circadian rhythms in the rat: ablation and dopamine blocking studies. Behavioural Brain Research, 1992, 47, 159-168.                | 1.2 | 98        |
| 100 | Ethanol and circadian rhythms in the syrian hamster: Effects on entrained phase, reentrainment rate, and period. Pharmacology Biochemistry and Behavior, 1992, 43, 159-165. | 1.3 | 33        |
| 101 | Scheduled daily exercise or feeding alters the phase of photic entrainment in Syrian hamsters.<br>Physiology and Behavior, 1991, 50, 1257-1260.                             | 1.0 | 66        |
| 102 | Characteristics of Food-Entrained Orcadian Rhythms in Rats During Long-Term Exposure to Constant<br>Light. Chronobiology International, 1990, 7, 383-391.                   | 0.9 | 15        |
| 103 | Effects of aging on food-entrained circadian rhythms in the rat. Neurobiology of Aging, 1990, 11, 619-624.                                                                  | 1.5 | 22        |
| 104 | Circadian pitfalls in experimental designs employing food restriction. Cognitive, Affective and Behavioral Neuroscience, 1990, 18, 23-29.                                   | 1.2 | 19        |
| 105 | Food-Anticipatory Circadian Rhythms in Rats with Paraventricular and Lateral Hypothalamic<br>Ablations. Journal of Biological Rhythms, 1988, 3, 277-291.                    | 1.4 | 86        |
| 106 | Palatable daily meals entrain anticipatory activity rhythms in free-feeding rats: Dependence on meal size and nutrient content. Physiology and Behavior, 1987, 41, 219-226. | 1.0 | 131       |
| 107 | Periodic water availability is not a potent zeitgeber for entrainment of circadian locomotor rhythms in rats. Physiology and Behavior, 1985, 34, 17-22.                     | 1.0 | 31        |
| 108 | Suprachiasmatic nuclei lesions eliminate circadian temperature and sleep rhythms in the rat.<br>Physiology and Behavior, 1984, 32, 357-368.                                 | 1.0 | 191       |

| #   | Article                                                                                                                 | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Recovery Sleep Following Sleep Deprivation in Intact and Suprachiasmatic Nuclei-Lesioned Rats. Sleep, 1983, 6, 217-233. | 0.6 | 217       |