Yi Zhi Zhuo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7858405/publications.pdf Version: 2024-02-01

<u> Yi 7hi 7huo</u>

#	Article	IF	CITATIONS
1	Towards the "sustainable―operation at -30°C without the expense of energy for heating on-face electronics: Intelligent heat conservation and waste heat utilization. Energy Reports, 2022, 8, 6753-6763.	2.5	1
2	Adamantane-based block poly(arylene ether sulfone)s as anion exchange membranes. Polymer, 2022, 255, 125155.	1.8	8
3	Polysiloxane as icephobic materials – The past, present and the future. Chemical Engineering Journal, 2021, 405, 127088.	6.6	83
4	Simultaneously Toughening and Stiffening Elastomers with Octuple Hydrogen Bonding. Advanced Materials, 2021, 33, e2008523.	11.1	92
5	Carbon quantum dots (CQDs) and polyethyleneimine (PEI) layer-by-layer (LBL) self-assembly PEK-C-based membranes with high forward osmosis performance. Chemical Engineering Research and Design, 2021, 170, 423-433.	2.7	11
6	Dynamic Antiâ€lcing Surfaces (DAIS). Advanced Science, 2021, 8, e2101163.	5.6	49
7	Gels as emerging anti-icing materials: a mini review. Materials Horizons, 2021, 8, 3266-3280.	6.4	49
8	Design of Icephobic Surfaces by Lowering Ice Adhesion Strength: A Mini Review. Coatings, 2021, 11, 1343.	1.2	34
9	Ultrafast self-healing and highly transparent coating with mechanically durable icephobicity. Applied Materials Today, 2020, 19, 100542.	2.3	40
10	Enhanced ionic conductivity of anion exchange membranes by grafting flexible ionic strings on multiblock copolymers. International Journal of Hydrogen Energy, 2020, 45, 1998-2008.	3.8	15
11	Self-Deicing Electrolyte Hydrogel Surfaces with Pa-level Ice Adhesion and Durable Antifreezing/Antifrost Performance. ACS Applied Materials & Interfaces, 2020, 12, 35572-35578.	4.0	65
12	Anti-icing lonogel Surfaces: Inhibiting Ice Nucleation, Growth, and Adhesion. , 2020, 2, 616-623.		52
13	Design and preparation of icephobic PDMS-based coatings by introducing an aqueous lubricating layer and macro-crack initiators at the ice-substrate interface. Progress in Organic Coatings, 2020, 147, 105737.	1.9	35
14	Enabling phase transition of infused lubricant in porous structure for exceptional oil/water separation. Journal of Hazardous Materials, 2020, 390, 122176.	6.5	30
15	Liquid layer generators for excellent icephobicity at extremely low temperatures. Materials Horizons, 2019, 6, 2063-2072.	6.4	53
16	Interlaboratory Study of Ice Adhesion Using Different Techniques. Coatings, 2019, 9, 678.	1.2	44
17	Durable Low Ice Adhesion Foams Modulated by Submicrometer Pores. Industrial & Engineering Chemistry Research, 2019, 58, 17776-17783.	1.8	31
18	An ultra-durable icephobic coating by a molecular pulley. Soft Matter, 2019, 15, 3607-3611.	1.2	47

Үі Zні Zнио

#	Article	IF	CITATIONS
19	Understanding the role of hollow sub-surface structures in reducing ice adhesion strength. Soft Matter, 2019, 15, 2905-2910.	1.2	35
20	Epidermal Gland Inspired Self-Repairing Slippery Lubricant-Infused Porous Coatings with Durable Low Ice Adhesion. Coatings, 2019, 9, 602.	1.2	26
21	Enhancing the Mechanical Durability of Icephobic Surfaces by Introducing Autonomous Self-Healing Function. ACS Applied Materials & Interfaces, 2018, 10, 11972-11978.	4.0	99
22	One-Step Fabrication of Bioinspired Lubricant-Regenerable Icephobic Slippery Liquid-Infused Porous Surfaces. ACS Omega, 2018, 3, 10139-10144.	1.6	68
23	Design and preparation of sandwich-like polydimethylsiloxane (PDMS) sponges with super-low ice adhesion. Soft Matter, 2018, 14, 4846-4851.	1.2	86
24	Crosslinked side-chain-type anion exchange membranes with enhanced conductivity and dimensional stability. Journal of Membrane Science, 2017, 539, 24-33.	4.1	85
25	Side-chain-type anion exchange membranes bearing pendent imidazolium-functionalized poly(phenylene) Tj ETQc	1 1 0.784 4.1	·314 rgBT /0
26	Interpenetrating anion exchange membranes using poly(1-vinylimidazole) as bifunctional crosslinker for fuel cells. Journal of Membrane Science, 2016, 518, 295-304.	4.1	72
27	Comb-shaped phenolphthalein-based poly(ether sulfone)s as anion exchange membranes for alkaline fuel cells. RSC Advances, 2016, 6, 17269-17279.	1.7	24
28	Side-chain-type phenolphthalein-based poly(arylene ether sulfone nitrile)s anion exchange membrane for fuel cells. Journal of Membrane Science, 2016, 502, 94-105.	4.1	38
29	Anion exchange membranes based on carbazole-containing polyolefin for direct methanol fuel cells. Journal of Membrane Science, 2016, 497, 99-107.	4.1	41
30	Highly ionic-conductive crosslinked cardo poly(arylene ether sulfone)s as anion exchange membranes for alkaline fuel cells. Journal of Membrane Science, 2015, 491, 138-148.	4.1	58
31	Benzylmethyl-containing poly(arylene ether nitrile) as anion exchange membranes for alkaline fuel cells. Journal of Membrane Science, 2015, 481, 9-18.	4.1	60
32	Enhancement of hydroxide conductivity by grafting flexible pendant imidazolium groups into poly(arylene ether sulfone) as anion exchange membranes. Journal of Materials Chemistry A, 2015, 3, 18105-18114.	5.2	116
33	Phenolphthalein-based Poly(arylene ether sulfone nitrile)s Multiblock Copolymers As Anion Exchange Membranes for Alkaline Fuel Cells. ACS Applied Materials & Interfaces, 2015, 7, 8284-8292.	4.0	107

 $_{34}$ Influence of phenolphthalein groups on the structure and properties of poly(arylene ether sulfone) Tj ETQq0 0 0 rgBT./Overlock 10 Tf 50