Yi Zhi Zhuo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7858405/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhancement of hydroxide conductivity by grafting flexible pendant imidazolium groups into poly(arylene ether sulfone) as anion exchange membranes. Journal of Materials Chemistry A, 2015, 3, 18105-18114.	5.2	116
2	Phenolphthalein-based Poly(arylene ether sulfone nitrile)s Multiblock Copolymers As Anion Exchange Membranes for Alkaline Fuel Cells. ACS Applied Materials & Interfaces, 2015, 7, 8284-8292.	4.0	107
3	Enhancing the Mechanical Durability of Icephobic Surfaces by Introducing Autonomous Self-Healing Function. ACS Applied Materials & Interfaces, 2018, 10, 11972-11978.	4.0	99
4	Simultaneously Toughening and Stiffening Elastomers with Octuple Hydrogen Bonding. Advanced Materials, 2021, 33, e2008523.	11.1	92
5	Design and preparation of sandwich-like polydimethylsiloxane (PDMS) sponges with super-low ice adhesion. Soft Matter, 2018, 14, 4846-4851.	1.2	86
6	Crosslinked side-chain-type anion exchange membranes with enhanced conductivity and dimensional stability. Journal of Membrane Science, 2017, 539, 24-33.	4.1	85
7	Polysiloxane as icephobic materials – The past, present and the future. Chemical Engineering Journal, 2021, 405, 127088.	6.6	83

8 Side-chain-type anion exchange membranes bearing pendent imidazolium-functionalized poly(phenylene) Tj ETQq0.0.0 rgBT 1/2/3 verlock 1

9	Interpenetrating anion exchange membranes using poly(1-vinylimidazole) as bifunctional crosslinker for fuel cells. Journal of Membrane Science, 2016, 518, 295-304.	4.1	72
10	One-Step Fabrication of Bioinspired Lubricant-Regenerable Icephobic Slippery Liquid-Infused Porous Surfaces. ACS Omega, 2018, 3, 10139-10144.	1.6	68
11	Self-Deicing Electrolyte Hydrogel Surfaces with Pa-level Ice Adhesion and Durable Antifreezing/Antifrost Performance. ACS Applied Materials & Interfaces, 2020, 12, 35572-35578. 	4.0	65
12	Benzylmethyl-containing poly(arylene ether nitrile) as anion exchange membranes for alkaline fuel cells. Journal of Membrane Science, 2015, 481, 9-18.	4.1	60
13	Highly ionic-conductive crosslinked cardo poly(arylene ether sulfone)s as anion exchange membranes for alkaline fuel cells. Journal of Membrane Science, 2015, 491, 138-148.	4.1	58
14	Liquid layer generators for excellent icephobicity at extremely low temperatures. Materials Horizons, 2019, 6, 2063-2072.	6.4	53
15	Anti-icing lonogel Surfaces: Inhibiting Ice Nucleation, Growth, and Adhesion. , 2020, 2, 616-623.		52
16	Dynamic Antiâ€icing Surfaces (DAIS). Advanced Science, 2021, 8, e2101163.	5.6	49
17	Gels as emerging anti-icing materials: a mini review. Materials Horizons, 2021, 8, 3266-3280.	6.4	49
18	An ultra-durable icephobic coating by a molecular pulley. Soft Matter, 2019, 15, 3607-3611.	1.2	47

Үі Zні Zнио

2.5

1

#	Article	IF	CITATIONS
19	Interlaboratory Study of Ice Adhesion Using Different Techniques. Coatings, 2019, 9, 678.	1.2	44
20	Anion exchange membranes based on carbazole-containing polyolefin for direct methanol fuel cells. Journal of Membrane Science, 2016, 497, 99-107.	4.1	41
21	Ultrafast self-healing and highly transparent coating with mechanically durable icephobicity. Applied Materials Today, 2020, 19, 100542.	2.3	40
22	Side-chain-type phenolphthalein-based poly(arylene ether sulfone nitrile)s anion exchange membrane for fuel cells. Journal of Membrane Science, 2016, 502, 94-105.	4.1	38
23	Understanding the role of hollow sub-surface structures in reducing ice adhesion strength. Soft Matter, 2019, 15, 2905-2910.	1.2	35
24	Design and preparation of icephobic PDMS-based coatings by introducing an aqueous lubricating layer and macro-crack initiators at the ice-substrate interface. Progress in Organic Coatings, 2020, 147, 105737.	1.9	35
25	Design of Icephobic Surfaces by Lowering Ice Adhesion Strength: A Mini Review. Coatings, 2021, 11, 1343.	1.2	34
26	Durable Low Ice Adhesion Foams Modulated by Submicrometer Pores. Industrial & Engineering Chemistry Research, 2019, 58, 17776-17783.	1.8	31
27	Enabling phase transition of infused lubricant in porous structure for exceptional oil/water separation. Journal of Hazardous Materials, 2020, 390, 122176.	6.5	30
28	Epidermal Gland Inspired Self-Repairing Slippery Lubricant-Infused Porous Coatings with Durable Low Ice Adhesion. Coatings, 2019, 9, 602.	1.2	26
29	Comb-shaped phenolphthalein-based poly(ether sulfone)s as anion exchange membranes for alkaline fuel cells. RSC Advances, 2016, 6, 17269-17279.	1.7	24
30	Enhanced ionic conductivity of anion exchange membranes by grafting flexible ionic strings on multiblock copolymers. International Journal of Hydrogen Energy, 2020, 45, 1998-2008.	3.8	15
31	Carbon quantum dots (CQDs) and polyethyleneimine (PEI) layer-by-layer (LBL) self-assembly PEK-C-based membranes with high forward osmosis performance. Chemical Engineering Research and Design, 2021, 170, 423-433.	2.7	11
32	Adamantane-based block poly(arylene ether sulfone)s as anion exchange membranes. Polymer, 2022, 255, 125155.	1.8	8
33	Influence of phenolphthalein groups on the structure and properties of poly(arylene ether sulfone) Tj ETQq1 1	0.784314 r 1.7	gBT4/Overloc

	Towards the "sustainable―operation at -30ÄŰC without the expense of energy for heating on-face
34	electronics: Intelligent heat conservation and waste heat utilization. Energy Reports, 2022, 8,
	6753-6763.