
Xin Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7858267/publications.pdf Version: 2024-02-01

XIN CHENC

#	Article	IF	CITATIONS
1	Amino-modified metal–organic frameworks as peroxymonosulfate catalyst for bisphenol AF decontamination: ROS generation, degradation pathways, and toxicity evaluation. Separation and Purification Technology, 2022, 282, 119967.	3.9	13
2	Deprivation of unpaired electrons on graphitic carbon nitride-based carbocatalysts by peroxydisulfate driving a nonradical oxidation process. Journal of Cleaner Production, 2022, 334, 130220.	4.6	3
3	Impact of hydrological factors on the dynamic of COVID-19 epidemic: A multi-region study in China. Environmental Research, 2021, 198, 110474.	3.7	10
4	Staged assessment for the involving mechanism of humic acid on enhancing water decontamination using H2O2-Fe(III) process. Journal of Hazardous Materials, 2021, 407, 124853.	6.5	20
5	Interactions between the antibiotic tetracycline and humic acid: Examination of the binding sites, and effects of complexation on the oxidation of tetracycline. Water Research, 2021, 202, 117379.	5.3	75
6	Insight into the role of binding interaction in the transformation of tetracycline and toxicity distribution. Environmental Science and Ecotechnology, 2021, 8, 100127.	6.7	23
7	Probing the roles of pH and ionic strength on electrostatic binding of tetracycline by dissolved organic matters: Reevaluation of modified fitting model. Environmental Science and Ecotechnology, 2021, 8, 100133.	6.7	16
8	Estimation of the potential spread risk of COVID-19: Occurrence assessment along the Yangtze, Han, and Fu River basins in Hubei, China. Science of the Total Environment, 2020, 746, 141353.	3.9	15
9	Removal of contaminants by activating peroxymonosulfate (PMS) using zero valent iron (ZVI)-based bimetallic particles (ZVI/Cu, ZVI/Co, ZVI/Ni, and ZVI/Ag). RSC Advances, 2020, 10, 28232-28242.	1.7	28
10	Crucial roles of oxygen and superoxide radical in bisulfite-activated persulfate oxidation of bisphenol AF: Mechanisms, kinetics and DFT studies. Journal of Hazardous Materials, 2020, 391, 122228.	6.5	64
11	Enhanced kinetic performance of peroxymonosulfate/ZVI system with the addition of copper ions: Reactivity, mechanism, and degradation pathways. Journal of Hazardous Materials, 2020, 393, 122399.	6.5	58
12	ROS reevaluation for degradation of 4-chloro-3,5-dimethylphenol (PCMX) by UV and UV/persulfate processes in the water: Kinetics, mechanism, DFT studies and toxicity evolution. Chemical Engineering Journal, 2020, 390, 124610.	6.6	43
13	N, S-Doped porous carbons for persulfate activation to remove tetracycline: Nonradical mechanism. Journal of Hazardous Materials, 2020, 391, 122055.	6.5	121
14	Visible light induced acceleration of Fe(III)/Fe(II) cycles for enhancing phthalate degradation in C60 fullerenol modified Fe(III)/peroxymonosulfate process. Chemical Engineering Journal, 2020, 387, 124126.	6.6	32
15	Simultaneous removal of methylene blue and total dissolved copper in zero-valent iron/H2O2 Fenton system: Kinetics, mechanism and degradation pathway. Journal of Colloid and Interface Science, 2019, 555, 383-393.	5.0	68
16	Fe@C carbonized resin for peroxymonosulfate activation and bisphenol S degradation. Environmental Pollution, 2019, 252, 1042-1050.	3.7	66
17	Pre-magnetization for enhancing the iron-catalyzed activation of peroxymonosulfate via accelerating the corrosion of Fe0. Water Science and Technology, 2019, 79, 1287-1296.	1.2	5
18	Removal of Rhodamine B during the corrosion of zero valent tungsten via a tungsten species-catalyzed Fenton-like system. Journal of the Taiwan Institute of Chemical Engineers, 2019, 100, 202-209.	2.7	24

XIN CHENG

#	Article	IF	CITATIONS
19	Insights into the mechanism of nonradical reactions of persulfate activated by carbon nanotubes: Activation performance and structure-function relationship. Water Research, 2019, 157, 406-414.	5.3	263
20	Degradation of dimethyl phthalate by activating peroxymonosulfate using nanoscale zero valent tungsten: Mechanism and degradation pathway. Chemical Engineering Journal, 2019, 359, 138-148.	6.6	50
21	Heterogeneous activation of peroxymonosulfate by sillenite Bi25FeO40: Singlet oxygen generation and degradation for aquatic levofloxacin. Chemical Engineering Journal, 2018, 343, 128-137.	6.6	252
22	Generation of reactive oxygen species by promoting the Cu(II)/Cu(I) redox cycle with reducing agents in aerobic aqueous solution. Water Science and Technology, 2018, 78, 1390-1399.	1.2	14
23	Enhanced degradation of aqueous norfloxacin and enrofloxacin by UV-activated persulfate: Kinetics, pathways and deactivation. Chemical Engineering Journal, 2017, 316, 471-480.	6.6	133
24	Non-photochemical production of singlet oxygen via activation of persulfate by carbon nanotubes. Water Research, 2017, 113, 80-88.	5.3	776
25	Persulfate-assisted photodegradation of diethylstilbestrol using monoclinic BiVO4 under visible-light irradiation. Environmental Science and Pollution Research, 2017, 24, 3739-3747.	2.7	21
26	Activation of peroxymonosulfate by BiVO 4 under visible light for degradation of Rhodamine B. Chemical Physics Letters, 2016, 653, 101-107.	1.2	105
27	Oxidation of 2,4-dichlorophenol by non-radical mechanism using persulfate activated by Fe/S modified carbon nanotubes. Journal of Colloid and Interface Science, 2016, 469, 277-286.	5.0	106
28	Performance and Mechanism on Degradation of Estriol Using O ₃ /PS Process. Ozone: Science and Engineering, 2016, 38, 358-366.	1.4	14