G. Jeffrey Snyder

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7858174/g-jeffrey-snyder-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

577	57,032 citations	109	226
papers		h-index	g-index
639 ext. papers	65,606 ext. citations	11.3 avg, IF	8.22 L-index

#	Paper	IF	Citations
577	Thermoelectric transport effects beyond single parabolic band and acoustic phonon scattering. <i>Materials Advances</i> , 2022 , 3, 734-755	3.3	4
576	Tuning valley degeneracy with band inversion. <i>Journal of Materials Chemistry A</i> , 2022 , 10, 1588-1595	13	0
575	Conduction band engineering of half-Heusler thermoelectrics using orbital chemistry. <i>Journal of Materials Chemistry A</i> , 2022 , 10, 3051-3057	13	1
574	Effect of Texturing on Thermal, Electric and Elastic Properties of MoAlB, Fe2AlB2, and Mn2AlB2. Journal of the European Ceramic Society, 2022 , 42, 3183-3183	6	0
573	When power factor supersedes zT to determine power in a thermocouple. <i>Journal of Applied Physics</i> , 2022 , 131, 115101	2.5	O
572	Hidden Local Symmetry Breaking in Silver Diamondoid Compounds is Root Cause of Ultralow Thermal Conductivity <i>Advanced Materials</i> , 2022 , e2202255	24	2
571	Inherent Anharmonicity of Harmonic Solids. <i>Research</i> , 2022 , 2022, 1-11	7.8	1
57°	Ag rearrangement induced metal-insulator phase transition in thermoelectric MgAgSb. <i>Materials Today Physics</i> , 2022 , 25, 100702	8	
569	Estimating the lower-limit of fracture toughness from ideal-strength calculations <i>Materials Horizons</i> , 2021 ,	14.4	1
568	Printing thermoelectric inks toward next-generation energy and thermal devices. <i>Chemical Society Reviews</i> , 2021 ,	58.5	6
567	Finding the order in complexity: The electronic structure of 14-1-11 zintl compounds. <i>Applied Physics Letters</i> , 2021 , 119, 213902	3.4	1
566	Iterative design of a high zT thermoelectric material. <i>Applied Physics Letters</i> , 2021 , 119, 202101	3.4	1
565	Stress/pressure-stabilized cubic polymorph of Li3Sb with improved thermoelectric performance. Journal of Materials Chemistry A, 2021 , 9, 25024-25031	13	O
564	Parallel Dislocation Networks and Cottrell Atmospheres Reduce Thermal Conductivity of PbTe Thermoelectrics. <i>Advanced Functional Materials</i> , 2021 , 31, 2101214	15.6	15
563	Phase Boundary Mapping of Tin-Doped ZnSb Reveals Thermodynamic Route to High Thermoelectric Efficiency. <i>Advanced Energy Materials</i> , 2021 , 11, 2100181	21.8	4
562	Fracture toughness of thermoelectric materials. <i>Materials Science and Engineering Reports</i> , 2021 , 144, 100607	30.9	7
561	Distributed and localized cooling with thermoelectrics. <i>Joule</i> , 2021 , 5, 748-751	27.8	9

(2021-2021)

560	Ultralow Thermal Conductivity in Diamondoid Structures and High Thermoelectric Performance in (CuAg)(InGa)Te. <i>Journal of the American Chemical Society</i> , 2021 , 143, 5978-5989	16.4	15	
559	Thermal resistance at a twist boundary and a semicoherent heterointerface. <i>Physical Review B</i> , 2021 , 103,	3.3	2	
558	Quantifying charge carrier localization in chemically doped semiconducting polymers. <i>Nature Materials</i> , 2021 , 20, 1414-1421	27	20	
557	Nb-Mediated Grain Growth and Grain-Boundary Engineering in Mg3Sb2-Based Thermoelectric Materials. <i>Advanced Functional Materials</i> , 2021 , 31, 2100258	15.6	15	
556	Uncovering design principles for amorphous-like heat conduction using two-channel lattice dynamics. <i>Materials Today Physics</i> , 2021 , 18, 100344	8	13	
555	Charge-carrier-mediated lattice softening contributes to high zT in thermoelectric semiconductors. <i>Joule</i> , 2021 , 5, 1168-1182	27.8	11	
554	Thermal Evolution of Internal Strain in Doped PbTe. Chemistry of Materials, 2021, 33, 4765-4772	9.6	3	
553	When band convergence is not beneficial for thermoelectrics. <i>Nature Communications</i> , 2021 , 12, 3425	17.4	13	
552	Physical insights on the low lattice thermal conductivity of AgInSe2. <i>Materials Today Physics</i> , 2021 , 19, 100428	8	9	
551	First principles investigation of intrinsic and Na defects in XTe (X=Ca, Sr, Ba) nanostructured PbTe. <i>Materials Today Physics</i> , 2021 , 19, 100415	8	3	
550	Creep behavior and post-creep thermoelectric performance of the n-type Skutterudite alloy Yb0.3Co4Sb12. <i>Journal of Materiomics</i> , 2021 , 7, 89-97	6.7	2	
549	Thermoelectric Properties of Novel Semimetals: A Case Study of YbMnSb. <i>Advanced Materials</i> , 2021 , 33, e2003168	24	15	
548	Compositional Fluctuations Locked by Athermal Transformation Yielding High Thermoelectric Performance in GeTe. <i>Advanced Materials</i> , 2021 , 33, e2005612	24	22	
547	Enhanced thermoelectric performance in Mg3+xSb1.5Bi0.49Te0.01via engineering microstructure through melt-centrifugation. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 1733-1742	13	8	
546	Intrinsic carrier multiplication in layered Bi2O2Se avalanche photodiodes with gain bandwidth product exceeding 1 GHz. <i>Nano Research</i> , 2021 , 14, 1961-1966	10	7	
545	Synthesis and physical properties of single-crystalline InTe: towards high thermoelectric performance. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 5250-5260	7.1	6	
544	Temperature-Dependent Band Renormalization in CoSb3 Skutterudites Due to Sb-Ring-Related Vibrations. <i>Chemistry of Materials</i> , 2021 , 33, 1046-1052	9.6	7	
543	Thermoelectric Materials: Compositional Fluctuations Locked by Athermal Transformation Yielding High Thermoelectric Performance in GeTe (Adv. Mater. 1/2021). <i>Advanced Materials</i> , 2021 , 33, 2170008	24	5	

542	Using phase boundary mapping to resolve discrepancies in the Mg2SiMg2Sn miscibility gap. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 7208-7215	13	3
541	Orbital chemistry of high valence band convergence and low-dimensional topology in PbTe. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 12119-12139	13	7
540	Defect chemistry and doping of BiCuSeO. Journal of Materials Chemistry A, 2021, 9, 20685-20694	13	5
539	Discovery of multivalley Fermi surface responsible for the high thermoelectric performance in YbMnSb and YbMgSb. <i>Science Advances</i> , 2021 , 7,	14.3	18
538	Thermoelectric Materials: Thermoelectric Properties of Novel Semimetals: A Case Study of YbMnSb2 (Adv. Mater. 7/2021). <i>Advanced Materials</i> , 2021 , 33, 2170051	24	O
537	Possibility of interstitial Na as electron donor in Yb14MgSb11. MRS Communications, 2021 , 11, 226-232	2.7	1
536	Significant Enhancement of Thermoelectric Figure of Merit in BiSbTe-Based Composites by Incorporating Carbon Microfiber. <i>Advanced Functional Materials</i> , 2021 , 31, 2008851	15.6	23
535	Probing the phonon mean free paths in dislocation core by molecular dynamics simulation. <i>Journal of Applied Physics</i> , 2021 , 129, 055103	2.5	5
534	Phase-Transition-Enhanced Thermoelectric Transport in Rickardite Mineral Cu3\(\mathbb{U}\)Te2. Chemistry of Materials, 2021 , 33, 1832-1841	9.6	3
533	Thermoelectric Performance Enhancement in BiSbTe Alloy by Microstructure Modulation via Cyclic Spark Plasma Sintering with Liquid Phase. <i>Advanced Functional Materials</i> , 2021 , 31, 2009681	15.6	28
532	High thermoelectric performance enabled by convergence of nested conduction bands in PbBiSe with low thermal conductivity. <i>Nature Communications</i> , 2021 , 12, 4793	17.4	15
531	Regulating Te Vacancies through Dopant Balancing via Excess Ag Enables Rebounding Power Factor and High Thermoelectric Performance in p-Type PbTe. <i>Advanced Science</i> , 2021 , 8, e2100895	13.6	9
530	Dopant-segregation to grain boundaries controls electrical conductivity of n-type NbCo(Pt)Sn half-Heusler alloy mediating thermoelectric performance. <i>Acta Materialia</i> , 2021 , 217, 117147	8.4	6
529	Disorder-induced Anderson-like localization for bidimensional thermoelectrics optimization. <i>Matter</i> , 2021 , 4, 2970-2984	12.7	3
528	Thermal transport in defective and disordered materials. <i>Applied Physics Reviews</i> , 2021 , 8, 031311	17.3	13
527	What makes a material bendable? A thickness-dependent metric for bendability, malleability, ductility. <i>Matter</i> , 2021 , 4, 2694-2696	12.7	O
526	Role of interfaces in organic[horganic flexible thermoelectrics. Nano Energy, 2021, 89, 106380	17.1	9
525	The effect of MgAs alloying on the thermoelectric properties of n-type Mg(Sb, Bi). <i>Dalton Transactions</i> , 2021 , 50, 9376-9382	4.3	2

(2020-2021)

524	Visualizing defect energetics. <i>Materials Horizons</i> , 2021 , 8, 1966-1975	14.4	1
523	Phonon scattering in the complex strain field of a dislocation in PbTe. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 8506-8514	7.1	3
522	Band Engineering SnTe via Trivalent Substitutions for Enhanced Thermoelectric Performance. <i>Chemistry of Materials</i> , 2021 , 33, 9624-9637	9.6	3
521	Mg3(Bi,Sb)2 single crystals towards high thermoelectric performance. <i>Energy and Environmental Science</i> , 2020 , 13, 1717-1724	35.4	41
520	On the Dopability of Semiconductors and Governing Material Properties. <i>Chemistry of Materials</i> , 2020 , 32, 4467-4480	9.6	16
519	Vibrational Entropy Stabilizes Distorted Half-Heusler Structures. <i>Chemistry of Materials</i> , 2020 , 32, 4767-	-4 <i>7.1</i> 73	3
518	Weighted Mobility. Advanced Materials, 2020, 32, e2001537	24	156
517	Hall-effect Measurements and Transport Properties of Heterostructures in the Model System NiTe2-Sn12Sb2Te15. <i>Zeitschrift Fur Anorganische Und Allgemeine Chemie</i> , 2020 , 646, 1345-1351	1.3	
516	High-performance p-type elemental Te thermoelectric materials enabled by the synergy of carrier tuning and phonon engineering. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 12156-12168	13	6
515	Analytical Models of PhononPoint-Defect Scattering. <i>Physical Review Applied</i> , 2020 , 13,	4.3	25
514	Contrasting SnTe-NaSbTe and SnTe-NaBiTe Thermoelectric Alloys: High Performance Facilitated by Increased Cation Vacancies and Lattice Softening. <i>Journal of the American Chemical Society</i> , 2020 , 142, 12524-12535	16.4	21
513	Systematic over-estimation of lattice thermal conductivity in materials with electrically-resistive grain boundaries. <i>Energy and Environmental Science</i> , 2020 , 13, 1250-1258	35.4	23
512	Metallic n-Type Mg Sb Single Crystals Demonstrate the Absence of Ionized Impurity Scattering and Enhanced Thermoelectric Performance. <i>Advanced Materials</i> , 2020 , 32, e1908218	24	62
511	Stretchable fabric generates electric power from woven thermoelectric fibers. <i>Nature Communications</i> , 2020 , 11, 572	17.4	94
510	Band Sharpening and Band Alignment Enable High Quality Factor to Enhance Thermoelectric Performance in -Type PbS. <i>Journal of the American Chemical Society</i> , 2020 , 142, 4051-4060	16.4	71
509	Thermoelectric transport enhancement of Te-rich bismuth antimony telluride (Bi0.5Sb1.5Te3+x) through controlled porosity. <i>Journal of Materiomics</i> , 2020 , 6, 532-544	6.7	19
509		6.7 35·4	19 40

506	All-Inorganic Halide Perovskites as Potential Thermoelectric Materials: Dynamic Cation off-Centering Induces Ultralow Thermal Conductivity. <i>Journal of the American Chemical Society</i> , 2020 , 142, 9553-9563	16.4	64
505	The Thermoelectric Properties of -Type Bismuth Telluride: Bismuth Selenide Alloys BiTe Se. <i>Research</i> , 2020 , 2020, 4361703	7.8	33
504	Violation of the Relationship in the Lattice Thermal Conductivity of MgSb with Locally Asymmetric Vibrations. <i>Research</i> , 2020 , 2020, 4589786	7.8	9
503	Machine Learning Chemical Guidelines for Engineering Electronic Structures in Half-Heusler Thermoelectric Materials. <i>Research</i> , 2020 , 2020, 6375171	7.8	17
502	Revealing the Intrinsic Electronic Structure of 3D Half-Heusler Thermoelectric Materials by Angle-Resolved Photoemission Spectroscopy. <i>Advanced Science</i> , 2020 , 7, 1902409	13.6	31
501	The importance of the MgMg interaction in Mg3Sb2Mg3Bi2 shown through cation site alloying. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 2033-2038	13	18
500	Origin of inhomogeneity in spark plasma sintered bismuth antimony telluride thermoelectric nanocomposites. <i>Nano Research</i> , 2020 , 13, 1339-1346	10	2
499	Revealing nano-chemistry at lattice defects in thermoelectric materials using atom probe tomography. <i>Materials Today</i> , 2020 , 32, 260-274	21.8	31
498	Prediction of improved thermoelectric performance by ordering in double half-Heusler materials. Journal of Materials Chemistry A, 2020 , 8, 23590-23598	13	9
497	Expression of interfacial Seebeck coefficient through grain boundary engineering with multi-layer graphene nanoplatelets. <i>Energy and Environmental Science</i> , 2020 , 13, 4114-4121	35.4	30
496	Optimum load resistance for a thermoelectric generator system. <i>Energy Conversion and Management</i> , 2020 , 226, 113490	10.6	5
495	Thermoelectric transport of semiconductor full-Heusler VFe2Al. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 10174-10184	7.1	15
494	Unveiling the phonon scattering mechanisms in half-Heusler thermoelectric compounds. <i>Energy and Environmental Science</i> , 2020 , 13, 5165-5176	35.4	16
493	Crystal Structure and Atomic Vacancy Optimized Thermoelectric Properties in Gadolinium Selenides. <i>Chemistry of Materials</i> , 2020 , 32, 10130-10139	9.6	20
492	Electronic quality factor for thermoelectrics. Science Advances, 2020, 6,	14.3	49
491	Orbital Chemistry That Leads to High Valley Degeneracy in PbTe. Chemistry of Materials, 2020 , 32, 9771	-937679	12
490	Na Doping in PbTe: Solubility, Band Convergence, Phase Boundary Mapping, and Thermoelectric Properties. <i>Journal of the American Chemical Society</i> , 2020 , 142, 15464-15475	16.4	46
489	Discovery of high-performance thermoelectric copper chalcogenide using modified diffusion-couple high-throughput synthesis and automated histogram analysis technique. <i>Energy and Environmental Science</i> , 2020 , 13, 3041-3053	35.4	16

(2019-2020)

488	Thermal studies of individual Si/Ge heterojunctions IThe influence of the alloy layer on the heterojunction. <i>Journal of Materiomics</i> , 2020 , 6, 248-255	6.7	7	
487	Graphene/Strontium Titanate: Approaching Single Crystalllike Charge Transport in Polycrystalline Oxide Perovskite Nanocomposites through Grain Boundary Engineering. <i>Advanced Functional Materials</i> , 2020 , 30, 1910079	15.6	12	
486	Cobalt germanide precipitates indirectly improve the properties of thermoelectric germanium antimony tellurides. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 11419-11430	7.1	3	
485	Synergistically Optimizing Carrier Concentration and Decreasing Sound Velocity in n-type AgInSe2 Thermoelectrics. <i>Chemistry of Materials</i> , 2019 , 31, 8182-8190	9.6	13	
484	Creep behavior and postcreep thermoelectric performance of the n-type half-Heusler alloy Hf0.3Zr0.7NiSn0.98Sb0.02. <i>Materials Today Physics</i> , 2019 , 9, 100134	8	16	
483	Synergistic modulation of mobility and thermal conductivity in (Bi,Sb)2Te3 towards high thermoelectric performance. <i>Energy and Environmental Science</i> , 2019 , 12, 624-630	35.4	82	
482	Origins of ultralow thermal conductivity in 1-2-1-4 quaternary selenides. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 2589-2596	13	20	
481	Titanium-based thin film metallic glass as diffusion barrier layer for PbTe-based thermoelectric modules. <i>APL Materials</i> , 2019 , 7, 013001	5.7	10	
480	Interfaces in energy materials. APL Materials, 2019, 7, 012901	5.7	1	
479	Grain Boundary Engineering Nanostructured SrTiO3 for Thermoelectric Applications. <i>Advanced Materials Interfaces</i> , 2019 , 6, 1900222	4.6	31	
478	Double Half-Heuslers. <i>Joule</i> , 2019 , 3, 1226-1238	27.8	46	
477	Mg Deficiency in Grain Boundaries of n-Type Mg3Sb2 Identified by Atom Probe Tomography. <i>Advanced Materials Interfaces</i> , 2019 , 6, 1900429	4.6	23	
476	Microstructure and composition engineering Yb single-filled CoSb3 for high thermoelectric and mechanical performances. <i>Journal of Materiomics</i> , 2019 , 5, 702-710	6.7	17	
475	Short-range order in defective half-Heusler thermoelectric crystals. <i>Energy and Environmental Science</i> , 2019 , 12, 1568-1574	35.4	51	
474	Achieving band convergence by tuning the bonding ionicity in n-type Mg Sb. <i>Journal of Computational Chemistry</i> , 2019 , 40, 1693-1700	3.5	41	
473	Amphoteric Indium Enables Carrier Engineering to Enhance the Power Factor and Thermoelectric Performance in n-Type AgnPb100InnTe100+2n (LIST). <i>Advanced Energy Materials</i> , 2019 , 9, 1900414	21.8	34	
472	Dramatically reduced lattice thermal conductivity of Mg2Si thermoelectric material from nanotwinning. <i>Acta Materialia</i> , 2019 , 169, 9-14	8.4	17	
471	Thermal conductivity of complex materials. <i>National Science Review</i> , 2019 , 6, 380-381	10.8	26	

470	Lattice Softening Significantly Reduces Thermal Conductivity and Leads to High Thermoelectric Efficiency. <i>Advanced Materials</i> , 2019 , 31, e1900108	24	91
469	The importance of phase equilibrium for doping efficiency: iodine doped PbTe <i>Materials Horizons</i> , 2019 , 6, 1444-1453	14.4	26
468	The Thermoelectric Properties of Bismuth Telluride. <i>Advanced Electronic Materials</i> , 2019 , 5, 1800904	6.4	219
467	Realization of higher thermoelectric performance by dynamic doping of copper in n-type PbTe. <i>Energy and Environmental Science</i> , 2019 , 12, 3089-3098	35.4	73
466	Ultralow Thermal Conductivity and High-Temperature Thermoelectric Performance in n-Type K2.5Bi8.5Se14. <i>Chemistry of Materials</i> , 2019 , 31, 5943-5952	9.6	15
465	High-Efficiency and Stable Thermoelectric Module Based on Liquid-Like Materials. <i>Joule</i> , 2019 , 3, 1538-	15 / 8	75
464	Density, distribution and nature of planar faults in silver antimony telluride for thermoelectric applications. <i>Acta Materialia</i> , 2019 , 178, 135-145	8.4	4
463	High Thermoelectric Performance in PbSeNaSbSe2 Alloys from Valence Band Convergence and Low Thermal Conductivity. <i>Advanced Energy Materials</i> , 2019 , 9, 1901377	21.8	42
462	Phase Transformation Contributions to Heat Capacity and Impact on Thermal Diffusivity, Thermal Conductivity, and Thermoelectric Performance. <i>Advanced Materials</i> , 2019 , 31, e1902980	24	26
461	Conventional sintered Cu2-Se thermoelectric material. <i>Journal of Materiomics</i> , 2019 , 5, 626-633	6.7	8
460	Improvement of Low-Temperature zT in a Mg Sb -Mg Bi Solid Solution via Mg-Vapor Annealing. <i>Advanced Materials</i> , 2019 , 31, e1902337	24	64
459	A figure of merit for flexibility. <i>Science</i> , 2019 , 366, 690-691	33.3	37
458	Exceptional thermoelectric performance in Mg3Sb0.6Bi1.4 for low-grade waste heat recovery. <i>Energy and Environmental Science</i> , 2019 , 12, 965-971	35.4	97
457	Effect of anion substitution on the structural and transport properties of argyrodites CuPSeS. <i>Dalton Transactions</i> , 2019 , 48, 15822-15829	4.3	15
456	3D extruded composite thermoelectric threads for flexible energy harvesting. <i>Nature Communications</i> , 2019 , 10, 5590	17.4	36
455	Effect of Two-Dimensional Crystal Orbitals on Fermi Surfaces and Electron Transport in Three-Dimensional Perovskite Oxides. <i>Angewandte Chemie</i> , 2019 , 131, 5557-5566	3.6	5
454	Effect of Two-Dimensional Crystal Orbitals on Fermi Surfaces and Electron Transport in Three-Dimensional Perovskite Oxides. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 5503-5512	16.4	9
453	The Vacancy-Induced Electronic Structure of the SrTiO3IS urface. <i>Advanced Electronic Materials</i> , 2019 , 5, 1800460	6.4	11

(2018-2019)

452	A Percolation Model for Piezoresistivity in Conductor Polymer Composites. <i>Advanced Theory and Simulations</i> , 2019 , 2, 1800125	3.5	12
45 ¹	Mechanical properties in thermoelectric oxides: Ideal strength, deformation mechanism, and fracture toughness. <i>Acta Materialia</i> , 2018 , 149, 341-349	8.4	16
450	Resonant Bonding, Multiband Thermoelectric Transport, and Native Defects in n-Type BaBiTe3 \square Sex (x = 0, 0.05, and 0.1). <i>Chemistry of Materials</i> , 2018 , 30, 174-184	9.6	10
449	Observation of valence band crossing: the thermoelectric properties of CaZn2Sb2taMg2Sb2 solid solution. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 9437-9444	13	44
448	High Thermoelectric Performance in SnTeAgSbTe2 Alloys from Lattice Softening, Giant Phonon Vacancy Scattering, and Valence Band Convergence. <i>ACS Energy Letters</i> , 2018 , 3, 705-712	20.1	90
447	Polycrystalline ZrTe5 Parametrized as a Narrow-Band-Gap Semiconductor for Thermoelectric Performance. <i>Physical Review Applied</i> , 2018 , 9,	4.3	19
446	Minimum thermal conductivity in the context of diffuson-mediated thermal transport. <i>Energy and Environmental Science</i> , 2018 , 11, 609-616	35.4	129
445	Quaternary Pavonites ASnBiS (A = Li, Na): Site Occupancy Disorder Defines Electronic Structure. <i>Inorganic Chemistry</i> , 2018 , 57, 2260-2268	5.1	7
444	Grain Boundaries Softening Thermoelectric Oxide BiCuSeO. <i>ACS Applied Materials & Damp; Interfaces</i> , 2018 , 10, 6772-6777	9.5	9
443	Grain boundary dominated charge transport in Mg3Sb2-based compounds. <i>Energy and Environmental Science</i> , 2018 , 11, 429-434	35.4	157
442	Improving the thermoelectric performance in Mg3+xSb1.5Bi0.49Te0.01 by reducing excess Mg. <i>APL Materials</i> , 2018 , 6, 016106	5.7	32
441	Manipulating Band Structure through Reconstruction of Binary Metal Sulfide for High-Performance Thermoelectrics in Solution-Synthesized Nanostructured Bi S I. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 2413-2418	16.4	10
440	Enhancement of average thermoelectric figure of merit by increasing the grain-size of Mg3.2Sb1.5Bi0.49Te0.01. <i>Applied Physics Letters</i> , 2018 , 112, 033903	3.4	85
439	Impact of Ni content on the thermoelectric properties of half-Heusler TiNiSn. <i>Energy and Environmental Science</i> , 2018 , 11, 311-320	35.4	73
438	Assessing the Thermal Conductivity of Cu2\(\mathbb{Q}\)Se Alloys Undergoing a Phase Transition via the Simultaneous Measurement of Thermoelectric Parameters by a Harman-Based Setup. <i>Journal of Electronic Materials</i> , 2018 , 47, 3314-3319	1.9	14
437	Enhanced Thermoelectric Performance in 18-Electron Nb0.8CoSb Half-Heusler Compound with Intrinsic Nb Vacancies. <i>Advanced Functional Materials</i> , 2018 , 28, 1705845	15.6	79
436	Ultralow Thermal Conductivity in Diamond-Like Semiconductors: Selective Scattering of Phonons from Antisite Defects. <i>Chemistry of Materials</i> , 2018 , 30, 3395-3409	9.6	16
435	Boosting the thermoelectric performance of PbSe through dynamic doping and hierarchical phonon scattering. <i>Energy and Environmental Science</i> , 2018 , 11, 1848-1858	35.4	112

434	Low-Symmetry Rhombohedral GeTe Thermoelectrics. <i>Joule</i> , 2018 , 2, 976-987	27.8	275
433	A valence balanced rule for discovery of 18-electron half-Heuslers with defects. <i>Energy and Environmental Science</i> , 2018 , 11, 1480-1488	35.4	68
432	Simple and efficient synthesis of nanograin structured single phase filled skutterudite for high thermoelectric performance. <i>Acta Materialia</i> , 2018 , 142, 8-17	8.4	34
431	Unique Role of Refractory Ta Alloying in Enhancing the Figure of Merit of NbFeSb Thermoelectric Materials. <i>Advanced Energy Materials</i> , 2018 , 8, 1701313	21.8	128
430	Discovery of High-Performance Thermoelectric Chalcogenides through Reliable High-Throughput Material Screening. <i>Journal of the American Chemical Society</i> , 2018 , 140, 10785-10793	16.4	86
429	Compressive creep behavior of hot-pressed GeTe based TAGS-85 and effect of creep on thermoelectric properties. <i>Acta Materialia</i> , 2018 , 158, 239-246	8.4	13
428	Suppression of atom motion and metal deposition in mixed ionic electronic conductors. <i>Nature Communications</i> , 2018 , 9, 2910	17.4	97
427	Melt-Centrifuged (Bi,Sb) Te: Engineering Microstructure toward High Thermoelectric Efficiency. <i>Advanced Materials</i> , 2018 , 30, e1802016	24	95
426	Ductile deformation mechanism in semiconductor 🖺 g2S. Npj Computational Materials, 2018, 4,	10.9	28
425	Highly fluidic liquid at homointerface generates grain-boundary dislocation arrays for high-performance bulk thermoelectrics. <i>Acta Materialia</i> , 2018 , 159, 266-275	8.4	13
424	Mechanical softening of thermoelectric semiconductor Mg2Si from nanotwinning. <i>Scripta Materialia</i> , 2018 , 157, 90-94	5.6	10
423	Giant enhancement of the figure-of-merit over a broad temperature range in nano-boron incorporated Cu2Se. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 18409-18416	13	37
422	Thermopower-conductivity relation for distinguishing transport mechanisms: Polaron hopping in CeO2 and band conduction in SrTiO3. <i>Physical Review B</i> , 2018 , 97,	3.3	20
421	Band engineering in Mg3Sb2 by alloying with Mg3Bi2 for enhanced thermoelectric performance. <i>Materials Horizons</i> , 2018 , 5, 59-64	14.4	109
420	Phase Boundary Mapping to Obtain n-type Mg3Sb2-Based Thermoelectrics. <i>Joule</i> , 2018 , 2, 141-154	27.8	186
419	First-principles calculations and experimental studies of XYZ2 thermoelectric compounds: detailed analysis of van der Waals interactions. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 19502-19519	13	15
418	Chalcopyrite ZnSnSb: A Promising Thermoelectric Material. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 43682-43690	9.5	14
417	Phonon diffraction and dimensionality crossover in phonon-interface scattering. <i>Communications Physics</i> , 2018 , 1,	5.4	18

416	Argyrodite-Type Cu8GeSe6日Tex (0 L D): Temperature-Dependent Crystal Structure and Thermoelectric Properties. <i>Zeitschrift Fur Anorganische Und Allgemeine Chemie</i> , 2018 , 644, 1915-1922	1.3	8
415	Empirical modeling of dopability in diamond-like semiconductors. <i>Npj Computational Materials</i> , 2018 , 4,	10.9	17
414	Improved stability and high thermoelectric performance through cation site doping in n-type La-doped Mg3Sb1.5Bi0.5. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 19941-19946	13	49
413	Thermal boundary resistance correlated with strain energy in individual Si film-wafer twist boundaries. <i>Materials Today Physics</i> , 2018 , 6, 53-59	8	16
412	Heat capacity of Mg3Sb2, Mg3Bi2, and their alloys at high temperature. <i>Materials Today Physics</i> , 2018 , 6, 83-88	8	44
411	Compliant and stretchable thermoelectric coils for energy harvesting in miniature flexible devices. <i>Science Advances</i> , 2018 , 4, eaau5849	14.3	147
410	Temperature Dependent n-Type Self Doping in Nominally 19-Electron Half-Heusler Thermoelectric Materials. <i>Advanced Energy Materials</i> , 2018 , 8, 1801409	21.8	38
409	Determining ideal strength and failure mechanism of thermoelectric CuInTe2 through quantum mechanics. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 11743-11750	13	7
408	Matminer: An open source toolkit for materials data mining. <i>Computational Materials Science</i> , 2018 , 152, 60-69	3.2	221
407	A practical field guide to thermoelectrics: Fundamentals, synthesis, and characterization. <i>Applied Physics Reviews</i> , 2018 , 5, 021303	17.3	156
406	Using the 18-Electron Rule To Understand the Nominal 19-Electron Half-Heusler NbCoSb with Nb Vacancies. <i>Chemistry of Materials</i> , 2017 , 29, 1210-1217	9.6	59
405	Capturing Anharmonicity in a Lattice Thermal Conductivity Model for High-Throughput Predictions. <i>Chemistry of Materials</i> , 2017 , 29, 2494-2501	9.6	63
404	Nanocomposites from Solution-Synthesized PbTe-BiSbTe Nanoheterostructure with Unity Figure of Merit at Low-Medium Temperatures (500-600 K). <i>Advanced Materials</i> , 2017 , 29, 1605140	24	53
403	Highly Porous Thermoelectric Nanocomposites with Low Thermal Conductivity and High Figure of Merit from Large-Scale Solution-Synthesized Bi Te Se Hollow Nanostructures. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 3546-3551	16.4	86
402	Ideal Strength and Deformation Mechanism in High-Efficiency Thermoelectric SnSe. <i>Chemistry of Materials</i> , 2017 , 29, 2382-2389	9.6	34
401	The Blectron crystallbehavior in copper chalcogenides Cu2X (X = Se, S). <i>Journal of Materials Chemistry A</i> , 2017 , 5, 5098-5105	13	63
400	Thermoelectric transport properties of polycrystalline SnSe alloyed with PbSe. <i>Applied Physics Letters</i> , 2017 , 110, 053901	3.4	44
399	A computational assessment of the electronic, thermoelectric, and defect properties of bournonite (CuPbSbS) and related substitutions. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 6743-6756	3.6	30

398	Compromise and Synergy in High-Efficiency Thermoelectric Materials. <i>Advanced Materials</i> , 2017 , 29, 16	50 5 884	742
397	Lattice Dislocations Enhancing Thermoelectric PbTe in Addition to Band Convergence. <i>Advanced Materials</i> , 2017 , 29, 1606768	24	272
396	Defect-Controlled Electronic Structure and Phase Stability in Thermoelectric Skutterudite CoSb3. <i>Chemistry of Materials</i> , 2017 , 29, 3999-4007	9.6	14
395	High Electron Mobility and Disorder Induced by Silver Ion Migration Lead to Good Thermoelectric Performance in the Argyrodite Ag8SiSe6. <i>Chemistry of Materials</i> , 2017 , 29, 4833-4839	9.6	43
394	Engineering the Thermoelectric Transport in Half-Heusler Materials through a Bottom-Up Nanostructure Synthesis. <i>Advanced Energy Materials</i> , 2017 , 7, 1700446	21.8	40
393	Enhancing the thermoelectric performance of SnSe1\textbf{XTex} nanoplates through band engineering. Journal of Materials Chemistry A, 2017 , 5, 10713-10721	13	68
392	High Temperature Electronic and Thermal Transport Properties of EuGa2⊠ In x Sb2. <i>Journal of Electronic Materials</i> , 2017 , 46, 4798-4804	1.9	2
391	Deformation mechanisms in high-efficiency thermoelectric layered Zintl compounds. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 9050-9059	13	27
390	Compressive creep behaviour of hot-pressed PbTe. Scripta Materialia, 2017, 134, 71-74	5.6	11
389	Achieving zT > 1 in Inexpensive Zintl Phase Ca9Zn4+xSb9 by Phase Boundary Mapping. <i>Advanced Functional Materials</i> , 2017 , 27, 1606361	15.6	98
388	Effective mass and Fermi surface complexity factor from ab initio band structure calculations. <i>Npj Computational Materials</i> , 2017 , 3,	10.9	92
387	Thin-film metallic glass: an effective diffusion barrier for Se-doped AgSbTe thermoelectric modules. <i>Scientific Reports</i> , 2017 , 7, 45177	4.9	15
386	Vacancy-induced dislocations within grains for high-performance PbSe thermoelectrics. <i>Nature Communications</i> , 2017 , 8, 13828	17.4	287
385	A Chemical Understanding of the Band Convergence in Thermoelectric CoSb3 Skutterudites: Influence of Electron Population, Local Thermal Expansion, and Bonding Interactions. <i>Chemistry of Materials</i> , 2017 , 29, 1156-1164	9.6	38
384	Realizing high-performance thermoelectric power generation through grain boundary engineering of skutterudite-based nanocomposites. <i>Nano Energy</i> , 2017 , 41, 501-510	17.1	87
383	High Thermoelectric Performance of New Rhombohedral Phase of GeSe stabilized through Alloying with AgSbSe2. <i>Angewandte Chemie</i> , 2017 , 129, 14301-14306	3.6	15
382	Superstrengthening Bi_{2}Te_{3} through Nanotwinning. <i>Physical Review Letters</i> , 2017 , 119, 085501	7.4	39
381	High Thermoelectric Performance of New Rhombohedral Phase of GeSe stabilized through Alloying with AgSbSe. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 14113-14118	16.4	46

3	80	Significant enhancement of figure-of-merit in carbon-reinforced Cu2Se nanocrystalline solids. <i>Nano Energy</i> , 2017 , 41, 164-171	17.1	76
3	579	Figure of merit ZT of a thermoelectric device defined from materials properties. <i>Energy and Environmental Science</i> , 2017 , 10, 2280-2283	35.4	180
3	378	Grain boundary engineering with nano-scale InSb producing high performance In Ce Co4Sb12+ skutterudite thermoelectrics. <i>Journal of Materiomics</i> , 2017 , 3, 273-279	6.7	27
3	3 77	Isotropic Zero Thermal Expansion and Local Vibrational Dynamics in (Sc,Fe)F. <i>Inorganic Chemistry</i> , 2017 , 56, 10840-10843	5.1	13
3	576	Enhanced Thermoelectric Performance through Tuning Bonding Energy in Cu2Se1⊠Sx Liquid-like Materials. <i>Chemistry of Materials</i> , 2017 , 29, 6367-6377	9.6	115
3	37 <i>5</i>	Enhanced stability and thermoelectric figure-of-merit in copper selenide by lithium doping. <i>Materials Today Physics</i> , 2017 , 1, 7-13	8	75
3	674	Ultrahigh thermoelectric performance in Cu2Se-based hybrid materials with highly dispersed molecular CNTs. <i>Energy and Environmental Science</i> , 2017 , 10, 1928-1935	35.4	215
3	373	SnO as a potential oxide thermoelectric candidate. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 8854-8861	7.1	52
3	572	Self-Tuning n-Type Bi(Te,Se)/SiC Thermoelectric Nanocomposites to Realize High Performances up to 300 LC. <i>Advanced Science</i> , 2017 , 4, 1700259	13.6	53
3	371	Optimization principles and the figure of merit for triboelectric generators. <i>Science Advances</i> , 2017 , 3, eaap8576	14.3	78
3	570	Enhanced Strength Through Nanotwinning in the Thermoelectric Semiconductor InSb. <i>Physical Review Letters</i> , 2017 , 119, 215503	7.4	31
3	69	Metal phosphides as potential thermoelectric materials. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 1244	1 7 1245	i 6 35
3	68	Micro- and Macromechanical Properties of Thermoelectric Lead Chalcogenides. <i>ACS Applied Materials & ACS Applied &</i>	9.5	30
3	67	Mechanical properties of thermoelectric lanthanum telluride from quantum mechanics. <i>Journal Physics D: Applied Physics</i> , 2017 , 50, 274002	3	9
3	66	An ab initio electronic transport database for inorganic materials. <i>Scientific Data</i> , 2017 , 4, 170085	8.2	89
3	65	High thermoelectric performance in (Bi0.25Sb0.75)2Te3 due to band convergence and improved by carrier concentration control. <i>Materials Today</i> , 2017 , 20, 452-459	21.8	119
3	64	Charge-transport model for conducting polymers. <i>Nature Materials</i> , 2017 , 16, 252-257	27	316
3	,63	Phonon scattering by dislocations at grain boundaries in polycrystalline Bi0.5Sb1.5Te3. <i>Physica Status Solidi (B): Basic Research</i> , 2017 , 254, 1600103	1.3	34

362	Skutterudite with graphene-modified grain-boundary complexion enhances zT enabling high-efficiency thermoelectric device. <i>Energy and Environmental Science</i> , 2017 , 10, 183-191	35.4	191
361	Introduction to Modeling Thermoelectric Transport at High Temperatures 2017 , 207-224		5
360	First Principles Calculations of Electron Transport Properties in Disordered Thermoelectrics 2017 , 94-11	4	1
359	Graphene-Like Exfoliated Quasi-2D Thermoelectric Crystals 2017 , 245-256		14
358	Compatibility 2016 , 227-280		
357	Relating phase transition heat capacity to thermal conductivity and effusivity in Cu2Se. <i>Physica Status Solidi - Rapid Research Letters</i> , 2016 , 10, 618-621	2.5	15
356	Structure and Failure Mechanism of the Thermoelectric CoSb/TiCoSb Interface. <i>ACS Applied Materials & ACS Applied & ACS </i>	9.5	11
355	Thermal stability of Mg2Si0.4Sn0.6 in inert gases and atomic-layer-deposited Al2O3 thin film as a protective coating. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 17726-17731	13	15
354	Engineering half-Heusler thermoelectric materials using Zintl chemistry. <i>Nature Reviews Materials</i> , 2016 , 1,	73.3	248
353	Thinking Like a Chemist: Intuition in Thermoelectric Materials. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 6826-41	16.4	478
352	Denken wie ein Chemiker: Thermoelektrika intuitiv. Angewandte Chemie, 2016 , 128, 6938-6954	3.6	21
351	p-Type Co Interstitial Defects in Thermoelectric Skutterudite CoSb3 Due to the Breakage of Sb4-Rings. <i>Chemistry of Materials</i> , 2016 , 28, 2172-2179	9.6	25
350	YCuTe2: a member of a new class of thermoelectric materials with CuTe4-based layered structure. Journal of Materials Chemistry A, 2016 , 4, 2461-2472	13	43
349	Atomistic explanation of brittle failure of thermoelectric skutterudite CoSb3. <i>Acta Materialia</i> , 2016 , 103, 775-780	8.4	25
348	Dislocation strain as the mechanism of phonon scattering at grain boundaries. <i>Materials Horizons</i> , 2016 , 3, 234-240	14.4	94
347	The Influence of Weak Tin Doping on the Thermoelectric Properties of Zinc Antimonide. <i>Journal of Electronic Materials</i> , 2016 , 45, 1871-1874	1.9	10
346	Calculation of dopant solubilities and phase diagrams of XPbBe (X = Br, Na) limited to defects with localized charge. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 1769-1775	7.1	8
345	ZnSb Polymorphs with Improved Thermoelectric Properties. <i>Chemistry of Materials</i> , 2016 , 28, 2912-2920	9.6	13

(2015-2016)

344	Enhanced thermoelectric properties of the Zintl phase BaGa2Sb2via doping with Na or K. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 1867-1875	13	22
343	Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. <i>Science</i> , 2016 , 351, 141-4	33.3	1237
342	Chapter 1:Zintl Phases: Recent Developments in Thermoelectrics and Future Outlook. <i>RSC Energy and Environment Series</i> , 2016 , 1-26	0.6	11
341	Distinct Impact of Alkali-Ion Doping on Electrical Transport Properties of Thermoelectric p-Type Polycrystalline SnSe. <i>Journal of the American Chemical Society</i> , 2016 , 138, 8875-82	16.4	243
340	Apparent critical phenomena in the superionic phase transition of Cu2-xSe. <i>New Journal of Physics</i> , 2016 , 18, 013024	2.9	42
339	Thermoelectric performance of co-doped SnTe with resonant levels. <i>Applied Physics Letters</i> , 2016 , 109, 042102	3.4	31
338	Improved mechanical properties of thermoelectric (Bi0.2Sb0.8)2Te3 by nanostructuring. <i>APL Materials</i> , 2016 , 4, 104807	5.7	15
337	Understanding thermoelectric properties from high-throughput calculations: trends, insights, and comparisons with experiment. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 4414-4426	7.1	139
336	n-Type Bi2Te3-xSex Nanoplates with Enhanced Thermoelectric Efficiency Driven by Wide-Frequency Phonon Scatterings and Synergistic Carrier Scatterings. <i>ACS Nano</i> , 2016 , 10, 4719-27	16.7	235
335	Phase-Transition-Enhanced Thermoelectric Performance in Copper Selenide 2016 , 219-257		
334	Enhanced thermoelectric performance in rare-earth filled-skutterudites. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 4374-4379	7.1	21
333	Enhanced ideal strength of thermoelectric half-Heusler TiNiSn by sub-structure engineering. Journal of Materials Chemistry A, 2016 , 4, 14625-14636	13	39
332	Lead-free tin chalcogenide thermoelectric materials. <i>Inorganic Chemistry Frontiers</i> , 2016 , 3, 1449-1463	6.8	30
331	Phosphonic acids aid composition adjustment in the synthesis of Cu2+x Zn1\(\text{\textit{Z}} \) SnSe4\(\text{\text{\text{J}}} \) nanoparticles. Journal of Nanoparticle Research, 2016 , 18, 1	2.3	2
330	Enhanced thermoelectric properties in bulk nanowire heterostructure-based nanocomposites through minority carrier blocking. <i>Nano Letters</i> , 2015 , 15, 1349-55	11.5	106
329	Temperature dependent solubility of Yb in YbtoSb3 skutterudite and its effect on preparation, optimization and lifetime of thermoelectrics. <i>Journal of Materiomics</i> , 2015 , 1, 75-84	6.7	72
328	Solubility design leading to high figure of merit in low-cost Ce-CoSb3 skutterudites. <i>Nature Communications</i> , 2015 , 6, 7584	17.4	109
327	Silver as a highly effective bonding layer for lead telluride thermoelectric modules assembled by rapid hot-pressing. <i>Energy Conversion and Management</i> , 2015 , 98, 134-137	10.6	20

326	State of the art Ag50-Sb Se50-Te alloys: Their high zT values, microstructures and related phase equilibria. <i>Acta Materialia</i> , 2015 , 93, 38-45	8.4	20
325	Band gap estimation from temperature dependent Seebeck measurement D eviations from the 2e S maxTmax relation. <i>Applied Physics Letters</i> , 2015 , 106, 022112	3.4	135
324	High performance p-type segmented leg of misfit-layered cobaltite and half-Heusler alloy. <i>Energy Conversion and Management</i> , 2015 , 99, 20-27	10.6	22
323	The Co-Sb-Ga System: Isoplethal Section and Thermodynamic Modeling. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2015 , 46, 1488-1499	2.3	10
322	Nanostructuring of Undoped ZnSb by Cryo-Milling. <i>Journal of Electronic Materials</i> , 2015 , 44, 2578-2584	1.9	14
321	Ab initio study of intrinsic point defects in PbTe: an insight into phase stability. <i>Acta Materialia</i> , 2015 , 92, 72-80	8.4	35
320	Thermoelectrics. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. <i>Science</i> , 2015 , 348, 109-14	33.3	1163
319	Higher mobility in bulk semiconductors by separating the dopants from the charge-conducting band 🗈 case study of thermoelectric PbSe. <i>Materials Horizons</i> , 2015 , 2, 323-329	14.4	47
318	Liquidus projection and isothermal section at 650 °C of ternary CoBbCa system. <i>Journal of Alloys and Compounds</i> , 2015 , 637, 98-105	5.7	2
317	Enhanced thermoelectric properties of Sr5In2Sb6via Zn-doping. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 10289-10295	13	18
316	Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2. <i>Nature Materials</i> , 2015 , 14, 622-7	27	494
315	Demonstration of a phonon-glass electron-crystal strategy in (Hf,Zr)NiSn half-Heusler thermoelectric materials by alloying. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 22716-22722	13	101
314	Influence of Compensating Defect Formation on the Doping Efficiency and Thermoelectric Properties of Cu2-ySe1⊠Brx. <i>Chemistry of Materials</i> , 2015 , 27, 7018-7027	9.6	49
313	Convergence of multi-valley bands as the electronic origin of high thermoelectric performance in CoSb3 skutterudites. <i>Nature Materials</i> , 2015 , 14, 1223-8	27	426
312	Coinage-Metal-Stuffed Eu9Cd4Sb9: Metallic Compounds with Anomalous Low Thermal Conductivities. <i>Chemistry of Materials</i> , 2015 , 27, 7508-7519	9.6	36
311	High temperature thermoelectric properties of Zn-doped Eu5In2Sb6. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 10518-10524	7.1	22
310	Interfacial reactions between PbTe-based thermoelectric materials and Cu and Ag bonding materials. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 10590-10596	7.1	26
309	Mechanochemical Synthesis and High Temperature Thermoelectric Properties of Calcium-Doped Lanthanum Telluride LaCaTe. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 10459-10466	7.1	16

(2015-2015)

308	Computational and experimental investigation of TmAgTe2 and XYZ2 compounds, a new group of thermoelectric materials identified by first-principles high-throughput screening. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 10554-10565	7.1	72
307	Heterostructures of skutterudites and germanium antimony tellurides Istructure analysis and thermoelectric properties of bulk samples. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 10525-10533	7.1	13
306	Brittle Failure Mechanism in Thermoelectric Skutterudite CoSb3. <i>Chemistry of Materials</i> , 2015 , 27, 6329-	6336	46
305	High Thermoelectric Performance SnTeIh2Te3 Solid Solutions Enabled by Resonant Levels and Strong Vacancy Phonon Scattering. <i>Chemistry of Materials</i> , 2015 , 27, 7801-7811	9.6	155
304	Thermoelectric properties and electronic structure of the Zintl phase SrlhBbland the Ca(5-x)Sr(x)InBblaolid solution. <i>Journal of Physics Condensed Matter</i> , 2015 , 27, 015801	1.8	8
303	Mechanically Robust BiSbTe Alloys with Superior Thermoelectric Performance: A Case Study of Stable Hierarchical Nanostructured Thermoelectric Materials. <i>Advanced Energy Materials</i> , 2015 , 5, 14013	3 3 1.8	232
302	High temperature transport properties of BaZn2Sn2. <i>Journal of Alloys and Compounds</i> , 2015 , 622, 402-4	0 ;7 ₇	4
301	Measuring thermoelectric transport properties of materials. <i>Energy and Environmental Science</i> , 2015 , 8, 423-435	35.4	210
300	Resolving the true band gap of ZrNiSn half-Heusler thermoelectric materials. <i>Materials Horizons</i> , 2015 , 2, 68-75	14.4	76
299	Co-In-Sb Ternary System (I): Isothermal Sections and Liquidus Projection. <i>Metallurgical and Materials Transactions E</i> , 2015 , 2, 236-249		O
298	Measuring anisotropic resistivity of single crystals using the van der Pauw technique. <i>Physical Review B</i> , 2015 , 92,	3.3	14
297	Origin of resistivity anomaly in p-type leads chalcogenide multiphase compounds. <i>AIP Advances</i> , 2015 , 5, 053601	1.5	8
296	Electronic structure and thermoelectric properties of pnictogen-substituted ASn1.5Te1.5 (A = Co, Rh, Ir) skutterudites. <i>Journal of Applied Physics</i> , 2015 , 118, 035107	2.5	12
295	Ultrahigh Thermoelectric Performance in Mosaic Crystals. <i>Advanced Materials</i> , 2015 , 27, 3639-44	24	163
294	Increasing Seebeck Coefficients and Thermoelectric Performance of Sn/Sb/Te and Ge/Sb/Te Materials by Cd Doping. <i>Advanced Electronic Materials</i> , 2015 , 1, 1500266	6.4	15
293	Segmented Thermoelectric Oxide-Based Module for High-Temperature Waste Heat Harvesting. <i>Energy Technology</i> , 2015 , 3, 1143-1151	3.5	27
292	Heterogeneous Distribution of Sodium for High Thermoelectric Performance of p-type Multiphase Lead-Chalcogenides. <i>Advanced Energy Materials</i> , 2015 , 5, 1501047	21.8	56
291	High Temperature Thermoelectric Properties of the Solid-Solution Zintl Phase Eu11Cd6\\\ZnxSb12. Chemistry of Materials, 2015 , 27, 4413-4421	9.6	33

290	Characterization of Lorenz number with Seebeck coefficient measurement. APL Materials, 2015, 3, 0415	5 9 67	827
289	High thermoelectric and mechanical performance in highly dense Cu2⊠S bulks prepared by a melt-solidification technique. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 9432-9437	13	129
288	High thermoelectric figure-of-merit in Sb2Te3/Ag2Te bulk composites as Pb-free p-type thermoelectric materials. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 10494-10499	7.1	33
287	Unileg Thermoelectric Generator Design for Oxide Thermoelectrics and Generalization of the Unileg Design Using an Idealized Metal. <i>Journal of Electronic Materials</i> , 2015 , 44, 1834-1845	1.9	8
286	Bonding and high-temperature reliability of NiFeMo alloy/n-type PbTe joints for thermoelectric module applications. <i>Journal of Materials Science</i> , 2015 , 50, 2700-2708	4.3	23
285	Thermoelectric properties of the Zintl phases Yb5M2Sb6 (M = Al, Ga, In). <i>Dalton Transactions</i> , 2015 , 44, 6767-74	4.3	29
284	The Effects of Te2land Ilbubstitutions on the Electronic Structures, Thermoelectric Performance, and Hardness in Melt-Quenched Highly Dense Cu2-xSe. <i>Advanced Electronic Materials</i> , 2015 , 1, 1400015	6.4	40
283	Interfacial reactions in Ni/CoSb3 couples at 450 LC. Journal of Alloys and Compounds, 2015 , 632, 500-504	l 5.7	14
282	Thermoelectric Enhancement in BaGa2Sb2 by Zn Doping. <i>Chemistry of Materials</i> , 2015 , 27, 1622-1630	9.6	48
281	Comparison of Thermoelectric Transport Measurement Techniques Using n-type PbSe. <i>Journal of Electronic Materials</i> , 2015 , 44, 1967-1971	1.9	4
280	The intrinsic disorder related alloy scattering in ZrNiSn half-Heusler thermoelectric materials. <i>Scientific Reports</i> , 2014 , 4, 6888	4.9	161
279	Phase diagram of Intosb system and thermoelectric properties of In-containing skutterudites. <i>Energy and Environmental Science</i> , 2014 , 7, 812-819	35.4	96
278	High thermoelectric performance in non-toxic earth-abundant copper sulfide. <i>Advanced Materials</i> , 2014 , 26, 3974-8	24	501
277	High-Temperature Thermoelectric Properties of the SolidBolution Zintl Phase Eu11Cd6Sb12\Asx (x Chemistry of Materials, 2014 , 26, 1393-1403	9.6	30
276	Defect-Controlled Electronic Properties in AZn2Sb2 Zintl Phases. <i>Angewandte Chemie</i> , 2014 , 126, 3490-	3 49 4	19
275	Applying Quantitative Microstructure Control in Advanced Functional Composites. <i>Advanced Functional Materials</i> , 2014 , 24, 2135-2153	15.6	55
274	Optimum Carrier Concentration in n-Type PbTe Thermoelectrics. <i>Advanced Energy Materials</i> , 2014 , 4, 1400486	21.8	284
273	Thermoelectric properties of p-type polycrystalline SnSe doped with Ag. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 11171-11176	13	419

272	Elemental tellurium as a chiral p-type thermoelectric material. <i>Physical Review B</i> , 2014 , 89,	3.3	126
271	Thermoelectric properties and electronic structure of the Zintl phase Sr5Al2Sb6. <i>Dalton Transactions</i> , 2014 , 43, 4720-5	4.3	27
270	Thermoelectric alloys between PbSe and PbS with effective thermal conductivity reduction and high figure of merit. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 3169	13	78
269	Effect of isovalent substitution on the thermoelectric properties of the Cu2ZnGeSe(4-x)S(x) series of solid solutions. <i>Journal of the American Chemical Society</i> , 2014 , 136, 442-8	16.4	80
268	Band convergence in the non-cubic chalcopyrite compounds Cu2MGeSe4. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 10189-10194	7.1	47
267	Bond strength dependent superionic phase transformation in the solid solution series Cu2ZnGeSe4\(\text{NS} \)x. Journal of Materials Chemistry A, 2014 , 2, 1790-1794	13	29
266	Thermoelectric properties of Sn-doped p-type Cu3SbSe4: a compound with large effective mass and small band gap. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 13527-13533	13	87
265	TAGS-related indium compounds and their thermoelectric properties Ithe solid solution series (GeTe)xAgInySb1 $\c D$ Te2 (x = 1 $\c D$ 2; y = 0.5 and 1). <i>Journal of Materials Chemistry A</i> , 2014 , 2, 6384-6395	13	17
264	Optimization of thermoelectric efficiency in SnTe: the case for the light band. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 20741-8	3.6	186
263	Optimization of the carrier concentration in phase-separated half-Heusler compounds. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 13513-13518	13	39
262	A High-temperature, High-efficiency Solar Thermoelectric Generator Prototype. <i>Energy Procedia</i> , 2014 , 49, 1460-1469	2.3	40
261	Thermoelectric transport in Cu7PSe6 with high copper ionic mobility. <i>Journal of the American Chemical Society</i> , 2014 , 136, 12035-40	16.4	118
260	Nanostructures in Te/Sb/Ge/Ag (TAGS) thermoelectric materials induced by phase transitions associated with vacancy ordering. <i>Inorganic Chemistry</i> , 2014 , 53, 7722-9	5.1	34
259	Thermoelectric performance of tellurium-reduced quaternary p-type lead@halcogenide composites. <i>Acta Materialia</i> , 2014 , 80, 365-372	8.4	26
258	Glass-like lattice thermal conductivity and high thermoelectric efficiency in Yb9Mn4.2Sb9. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 215-220	13	96
257	Thermoelectric properties of the Yb9Mn4.2 $\mbox{\em Z}$ DNA2 $\mbox{\em Z}$ DNA5b9 solid solutions. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 7478-7483	13	47
256	Thermoelectric properties of the Ca(5)Al(2-x)In(x)Sb(6) solid solution. <i>Dalton Transactions</i> , 2014 , 43, 158	3 7 2 , 8	21
255	Thermoelectric performance of n-type (PbTe)0.75(PbS)0.15(PbSe)0.1 composites. <i>ACS Applied Materials & Amp; Interfaces</i> , 2014 , 6, 11476-83	9.5	58

254	High Band Degeneracy Contributes to High Thermoelectric Performance in p-Type Half-Heusler Compounds. <i>Advanced Energy Materials</i> , 2014 , 4, 1400600	21.8	198
253	Chemical composition tuning in quaternary p-type Pb-chalcogenidesa promising strategy for enhanced thermoelectric performance. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 1835-40	3.6	46
252	Tuning bands of PbSe for better thermoelectric efficiency. <i>Energy and Environmental Science</i> , 2014 , 7, 804-811	35.4	188
251	Nonstoichiometry in the Zintl Phase Yb1 Z n2Sb2 as a Route to Thermoelectric Optimization. <i>Chemistry of Materials</i> , 2014 , 26, 5710-5717	9.6	81
250	Composition modulation of Ag2Te nanowires for tunable electrical and thermal properties. <i>Nano Letters</i> , 2014 , 14, 5398-404	11.5	68
249	High-temperature thermoelectric properties of Cu1.97Ag0.03Se1+y. <i>Materials for Renewable and Sustainable Energy</i> , 2014 , 3, 1	4.7	34
248	Thermochemistry, Morphology, and Optical Characterization of Germanium Allotropes. <i>Chemistry of Materials</i> , 2014 , 26, 3263-3271	9.6	21
247	Transport properties and valence band feature of high-performance (GeTe)85(AgSbTe2)15thermoelectric materials. <i>New Journal of Physics</i> , 2014 , 16, 013057	2.9	32
246	Determining conductivity and mobility values of individual components in multiphase composite Cu1.97Ag0.03Se. <i>Applied Physics Letters</i> , 2014 , 105, 172103	3.4	20
245	Response to Comment on Effective thermal conductivity in thermoelectric materials[J. Appl. Phys. 113, 204904 (2013)]. <i>Journal of Applied Physics</i> , 2014 , 115, 126102	2.5	20
244	A new crystal: layer-structured rhombohedral In3Se4. <i>CrystEngComm</i> , 2014 , 16, 393-398	3.3	25
243	Linear dependence of the Hall coefficient of 1% Na doped PbTe with varying magnetic field. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2014 , 211, 1273-1275	1.6	2
242	Thermoelectric transport properties of diamond-like Cu1\(\mathbb{U}\)Fe1+xS2 tetrahedral compounds. Journal of Applied Physics, 2014 , 116, 203705	2.5	78
241	Thermoelectric properties of indium doped PbTe1-ySey alloys. <i>Journal of Applied Physics</i> , 2014 , 116, 03	37 <u>0</u> 7	25
240	Towards high efficiency segmented thermoelectric unicouples. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2014 , 211, 9-17	1.6	72
239	Defect-controlled electronic properties in AZnBblZintl phases. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 3422-6	16.4	91
238	Interfacial Reaction Between Nb Foil and n-Type PbTe Thermoelectric Materials During Thermoelectric Contact Fabrication. <i>Journal of Electronic Materials</i> , 2014 , 43, 4064-4069	1.9	21
237	Bonding and interfacial reaction between Ni foil and n-type PbTe thermoelectric materials for thermoelectric module applications. <i>Journal of Materials Science</i> , 2014 , 49, 1716-1723	4.3	50

236	Thermoelectric Properties and Microstructure Studies of Spinodally Decomposed PbTe0.38S0.62 Alloy. <i>Science of Advanced Materials</i> , 2014 , 6, 1453-1459	2.3	2
235	Phase characterization, thermal stability, high-temperature transport properties, and electronic structure of rare-earth Zintl phosphides Eu3M2P4 (M = Ga, In). <i>Inorganic Chemistry</i> , 2013 , 52, 3787-94	5.1	11
234	Atomic-Scale Interfacial Structure in Rock Salt and Tetradymite Chalcogenide Thermoelectric Materials. <i>Jom</i> , 2013 , 65, 390-400	2.1	23
233	Chemical Stability of (Ag,Cu)2Se: a Historical Overview. <i>Journal of Electronic Materials</i> , 2013 , 42, 2014-2	20 <u>11.9</u>	111
232	Thermal Management Optimization of a Thermoelectric-Integrated Methanol Evaporator Using a Compact CFD Modeling Approach. <i>Journal of Electronic Materials</i> , 2013 , 42, 2035-2042	1.9	10
231	Charge-Compensated Compound Defects in Ga-containing Thermoelectric Skutterudites. <i>Advanced Functional Materials</i> , 2013 , 23, 3194-3203	15.6	90
230	Enhanced thermoelectric performance in the very low thermal conductivity Ag2Se0.5Te0.5. <i>Applied Physics Letters</i> , 2013 , 103, 143906	3.4	40
229	Analytical and numerical parameter extraction for compact modeling of thermoelectric coolers. <i>International Journal of Heat and Mass Transfer</i> , 2013 , 60, 689-699	4.9	60
228	Effective thermal conductivity in thermoelectric materials. <i>Journal of Applied Physics</i> , 2013 , 113, 20490	42.5	66
227	Rational design of p-type thermoelectric PbTe: temperature dependent sodium solubility. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 8725	13	54
226	The Criteria for Beneficial Disorder in Thermoelectric Solid Solutions. <i>Advanced Functional Materials</i> , 2013 , 23, 1586-1596	15.6	252
225	Phonon scattering through a local anisotropic structural disorder in the thermoelectric solid solution Cu2Zn(1-x)Fe(x)GeSe4. <i>Journal of the American Chemical Society</i> , 2013 , 135, 726-32	16.4	94
224	Improved thermoelectric properties in Zn-doped Ca5Ga2Sb6. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 4244	13	40
223	Low Electron Scattering Potentials in High Performance Mg2Si0.45Sn0.55 Based Thermoelectric Solid Solutions with Band Convergence. <i>Advanced Energy Materials</i> , 2013 , 3, 1238-1244	21.8	186
222	Beneficial Contribution of Alloy Disorder to Electron and Phonon Transport in Half-Heusler Thermoelectric Materials. <i>Advanced Functional Materials</i> , 2013 , 23, 5123-5130	15.6	290
221	Validity of rigid band approximation of PbTe thermoelectric materials. APL Materials, 2013, 1, 011101	5.7	38
220	High Thermoelectric Efficiency of n-type PbS. Advanced Energy Materials, 2013, 3, 488-495	21.8	149
219	Thermoelectric properties of Zn-doped Ca5In2Sb6. <i>Dalton Transactions</i> , 2013 , 42, 9713-9	4.3	40

218	T-Shaped Bi2Te3IIe Heteronanojunctions: Epitaxial Growth, Structural Modeling, and Thermoelectric Properties. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 12458-12464	3.8	51
217	The microstructure, liquidus projection and thermodynamic modeling of thermoelectric Ag P b I Ie system. <i>Materials Chemistry and Physics</i> , 2013 , 141, 758-767	4.4	16
216	Characteristics of lattice thermal conductivity and carrier mobility of undoped PbSe-PbS solid solutions. <i>Journal Physics D: Applied Physics</i> , 2013 , 46, 405301	3	14
215	Optical band gap and the BursteinMoss effect in iodine doped PbTe using diffuse reflectance infrared Fourier transform spectroscopy. <i>New Journal of Physics</i> , 2013 , 15, 075020	2.9	143
214	Evaluating the potential for high thermoelectric efficiency of silver selenide. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 7568	7.1	83
213	Phase transition enhanced thermoelectric figure-of-merit in copper chalcogenides. <i>APL Materials</i> , 2013 , 1, 052107	5.7	91
212	Silicon-Based Thermoelectrics Made from a Boron-Doped Silicon Dioxide Nanocomposite. <i>Chemistry of Materials</i> , 2013 , 25, 4867-4873	9.6	20
211	Electron and phonon transport in Co-doped FeV0.6Nb0.4Sb half-Heusler thermoelectric materials. <i>Journal of Applied Physics</i> , 2013 , 114, 134905	2.5	42
210	Temperature dependent band gap in PbX (X = S, Se, Te). <i>Applied Physics Letters</i> , 2013 , 103, 262109	3.4	124
209	Thermoelectric properties and electronic structure of the zintl-phase Sr(3)AlSb(3). <i>ChemSusChem</i> , 2013 , 6, 2316-21	8.3	21
208	INFLUENCE OF THE CHEMICAL POTENTIAL ON THE CARRIER EFFECTIVE MASS IN THE THERMOELECTRIC SOLID SOLUTION Cu2Zn1-xFexGeSe4. Functional Materials Letters, 2013 , 06, 13400	10 ^{1.2}	7
207	Complex Thermoelectric Materials 2013 , 44-44		1
206	The self-compatibility effect in graded thermoelectric cooler elements. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2013 , 210, 1407-1417	1.6	14
205	Rapid Microwave Preparation of Thermoelectric TiNiSn and TiCoSb Half-Heusler Compounds. <i>Chemistry of Materials</i> , 2012 , 24, 2558-2565	9.6	109
204	Concentrated solar thermoelectric generators. Energy and Environmental Science, 2012, 5, 9055	35.4	187
203	Measurement of the electrical resistivity and Hall coefficient at high temperatures. <i>Review of Scientific Instruments</i> , 2012 , 83, 123902	1.7	186
202	Dopants effect on the band structure of PbTe thermoelectric material. <i>Applied Physics Letters</i> , 2012 , 101, 092102	3.4	64
201	A combinatorial approach to microstructure and thermopower of bulk thermoelectric materials: the pseudo-ternary PbTeAg2TeBb2Te3 system. <i>Journal of Materials Chemistry</i> , 2012 , 22, 24335		16

200	Ternary eutectic growth of nanostructured thermoelectric Ag-Pb-Te materials. <i>Applied Physics Letters</i> , 2012 , 101, 023107	3.4	20
199	Cu2ZnGeSe4 nanocrystals: synthesis and thermoelectric properties. <i>Journal of the American Chemical Society</i> , 2012 , 134, 4060-3	16.4	182
198	Band engineering of thermoelectric materials. <i>Advanced Materials</i> , 2012 , 24, 6125-35	24	998
197	Hot pressing and nanostructuring of Bi90Sb10 alloys to concurrently improve mechanical and thermoelectric properties. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2012 , 209, 2565-2	.5 1 69	3
196	Thermoelectric properties of Zn-doped Ca3AlSb3. <i>Journal of Materials Chemistry</i> , 2012 , 22, 9826		44
195	Improved Thermoelectric Properties in Lu-doped Yb\$_{14}\$MnSb\$_{11}\$ Zintl Compounds. <i>Applied Physics Express</i> , 2012 , 5, 031801	2.4	28
194	Copper ion liquid-like thermoelectrics. <i>Nature Materials</i> , 2012 , 11, 422-5	27	1339
193	Influence of the Triel Elements (M = Al, Ga, In) on the Transport Properties of Ca5M2Sb6 Zintl Compounds. <i>Chemistry of Materials</i> , 2012 , 24, 2091-2098	9.6	82
192	Synthesis, Structural Characterization, and Physical Properties of the Type-I Clathrates A8Zn18As28 (A = K, Rb, Cs) and Cs8Cd18As28. <i>Chemistry of Materials</i> , 2012 , 24, 3596-3603	9.6	35
191	Formation of highly oriented large nanoscale In2Te3 precipitates in bulk Bi2Te3. <i>Acta Materialia</i> , 2012 , 60, 4461-4467	8.4	13
190	Low effective mass leading to high thermoelectric performance. <i>Energy and Environmental Science</i> , 2012 , 5, 7963	35.4	413
189	Influence of a nano phase segregation on the thermoelectric properties of the p-type doped stannite compound Cu(2+x)Zn(1-x)GeSe4. <i>Journal of the American Chemical Society</i> , 2012 , 134, 7147-54	16.4	118
188	Reduced thermal conductivity in Pb-alloyed AgSbTe2 thermoelectric materials. <i>Acta Materialia</i> , 2012 , 60, 6144-6151	8.4	32
187	Thermopower enhancement in Pb1IMnxTe alloys and its effect on thermoelectric efficiency. <i>NPG Asia Materials</i> , 2012 , 4, e28-e28	10.3	195
186	Improved thermoelectric cooling based on the Thomson effect. <i>Physical Review B</i> , 2012 , 86,	3.3	42
185	Thermoelectric Materials: Band Engineering of Thermoelectric Materials (Adv. Mater. 46/2012). <i>Advanced Materials</i> , 2012 , 24, 6124-6124	24	38
184	Thermoelectric properties of Sr3GaSb3 la chain-forming Zintl compound. <i>Energy and Environmental Science</i> , 2012 , 5, 9121	35.4	110
183	Nanostructuring of thermoelectric Mg(2) Si via a nonequilibrium intermediate state. <i>Small</i> , 2012 , 8, 235	0£ 5	30

182	Weak electron-phonon coupling contributing to high thermoelectric performance in n-type PbSe. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 9705-9	11.5	303
181	A mesoporous anisotropic n-type Billelmonolith with low thermal conductivity as an efficient thermoelectric material. <i>Advanced Materials</i> , 2012 , 24, 5065-70	24	68
180	Chalcopyrite CuGaTe(2): a high-efficiency bulk thermoelectric material. <i>Advanced Materials</i> , 2012 , 24, 3622-6	24	245
179	High Thermoelectric Figure of Merit in PbTe Alloys Demonstrated in PbTeIdTe. <i>Advanced Energy Materials</i> , 2012 , 2, 670-675	21.8	208
178	Thermoelectric Properties of Mn-Doped Ca5Al2Sb6. <i>Journal of Electronic Materials</i> , 2012 , 41, 813-818	1.9	23
177	Waste Heat Recovery from a Marine Waste Incinerator Using a Thermoelectric Generator. <i>Journal of Electronic Materials</i> , 2012 , 41, 1024-1029	1.9	61
176	Scanning Seebeck Coefficient Measurement System for Homogeneity Characterization of Bulk and Thin-Film Thermoelectric Materials. <i>Journal of Electronic Materials</i> , 2012 , 41, 1667-1674	1.9	23
175	Formation of ordered nano-wire microstructures in thermoelectric PbAgBbIIe. <i>Acta Materialia</i> , 2012 , 60, 1129-1138	8.4	23
174	Increased electrical conductivity in fine-grained (Zr,Hf)NiSn based thermoelectric materials with nanoscale precipitates. <i>Applied Physics Letters</i> , 2012 , 100, 254104	3.4	31
173	Thermoelectric properties of Zn5Sb4In2-[[] 0.15). <i>Journal of Applied Physics</i> , 2012 , 111, 123712	2.5	4
172	3D Microstructures of Sb2Te3 Precipitates in PbTe Matrix with Prediction by a Weak Compatibility Condition 2012 , 125-130		
171	Combination of large nanostructures and complex band structure for high performance thermoelectric lead telluride. <i>Energy and Environmental Science</i> , 2011 , 4, 3640	35.4	137
170	High-temperature electrical and thermal transport properties of fully filled skutterudites RFe4Sb12 (R = Ca, Sr, Ba, La, Ce, Pr, Nd, Eu, and Yb). <i>Journal of Applied Physics</i> , 2011 , 109, 063713	2.5	137
169	A high temperature apparatus for measurement of the Seebeck coefficient. <i>Review of Scientific Instruments</i> , 2011 , 82, 063905	1.7	220
168	Reevaluation of PbTe1Idix as high performance n-type thermoelectric material. <i>Energy and Environmental Science</i> , 2011 , 4, 2090	35.4	324
167	Thermodynamics of Thermoelectric Phenomena and Applications. <i>Entropy</i> , 2011 , 13, 1481-1517	2.8	200
166	Reduction of thermal conductivity in PbTe:Tl by alloying with TlSbTe2. <i>Physical Review B</i> , 2011 , 83,	3.3	24
165	Mechanochemical synthesis and thermoelectric properties of high quality magnesium silicide. Journal of Materials Chemistry, 2011 , 21, 12259		179

(2011-2011)

-	164	Ca3AlSb3: an inexpensive, non-toxic thermoelectric material for waste heat recovery. <i>Energy and Environmental Science</i> , 2011 , 4, 510-518	35.4	178
-	163	Surfactant-free synthesis of Bi2Te3-Te micro-nano heterostructure with enhanced thermoelectric figure of merit. <i>ACS Nano</i> , 2011 , 5, 3158-65	16.7	96
1	162	Alloying to increase the band gap for improving thermoelectric properties of Ag2Te. <i>Journal of Materials Chemistry</i> , 2011 , 21, 18256		112
	161	Predicted electronic and thermodynamic properties of a newly discovered Zn8Sb7 phase. <i>Journal of the American Chemical Society</i> , 2011 , 133, 11255-61	16.4	30
1	160	Entropic stabilization and retrograde solubility in Zn4Sb3. <i>Physical Review B</i> , 2011 , 83,	3.3	39
-	159	Convergence of electronic bands for high performance bulk thermoelectrics. <i>Nature</i> , 2011 , 473, 66-9	50.4	2611
-	158	Solubility and microstructure in the pseudo-binary PbTeAg2Te system. <i>Journal of Solid State Chemistry</i> , 2011 , 184, 2543-2552	3.3	29
-	157	Lead telluride alloy thermoelectrics. <i>Materials Today</i> , 2011 , 14, 526-532	21.8	358
	156	High thermoelectric figure of merit in heavy hole dominated PbTe. <i>Energy and Environmental Science</i> , 2011 , 4, 2085	35.4	528
1	155	A weak compatibility condition for precipitation with application to the microstructure of PbTeBb2Te3 thermoelectrics. <i>Acta Materialia</i> , 2011 , 59, 6124-6132	8.4	11
-	154	Interfacial disconnections at Sb2Te3 precipitates in PbTe: Mechanisms of strain accommodation and phase transformation at a tetradymite/rocksalt telluride interface. <i>Acta Materialia</i> , 2011 , 59, 7724-	7 83 5	13
-	153	Solubility and formation of ternary Widmansttten precipitates in PbTe in the pseudo-binary PbTeBi2Te3 system. <i>Journal of Materials Science</i> , 2011 , 46, 3846-3854	4.3	17
-	152	Size control of Sb2Te3 WidmanstEten precipitates in thermoelectric PbTe. <i>Acta Materialia</i> , 2011 , 59, 2679-2692	8.4	24
-	151	Nanostructuring in 🗹 n4Sb3 with variable starting Zn compositions. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2011 , 208, 1652-1657	1.6	22
-	150	Doping of p-type ZnSb: Single parabolic band model and impurity band conduction. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2011 , 208, 2753-2759	1.6	59
-	149	High Thermoelectric Performance in PbTe Due to Large Nanoscale Ag2Te Precipitates and La Doping. <i>Advanced Functional Materials</i> , 2011 , 21, 241-249	15.6	424
-	148	Heavily doped p-type PbSe with high thermoelectric performance: an alternative for PbTe. <i>Advanced Materials</i> , 2011 , 23, 1366-70	24	392
	147	Stabilizing the optimal carrier concentration for high thermoelectric efficiency. <i>Advanced Materials</i> , 2011 , 23, 5674-8	24	323

146	Self-Tuning the Carrier Concentration of PbTe/Ag2Te Composites with Excess Ag for High Thermoelectric Performance. <i>Advanced Energy Materials</i> , 2011 , 1, 291-296	21.8	192
145	Optimized thermoelectric properties of Mo3Sb7\(\mathbb{I}\)Tex with significant phonon scattering by electrons. Energy and Environmental Science, 2011, 4, 4086	35.4	70
144	Direct tuning of electrical properties in nano-structured Bi2Se0.3Te2.7 by reversible electrochemical lithium reactions. <i>Chemical Communications</i> , 2011 , 47, 12173-5	5.8	12
143	Rapid consolidation of powdered materials by induction hot pressing. <i>Review of Scientific Instruments</i> , 2011 , 82, 025104	1.7	105
142	Phonon engineering through crystal chemistry. <i>Journal of Materials Chemistry</i> , 2011 , 21, 15843		567
141	Zone Leveling Crystal Growth of Thermoelectric PbTe Alloys with Sb2Te3 Widmanst E ten Precipitates. <i>Crystal Growth and Design</i> , 2011 , 11, 4183-4189	3.5	12
140	Crystal structure, characterization and thermoelectric properties of the type-I clathrate Ba8IJSryAl14Si32 (0.6III.3) prepared by aluminum flux. <i>Journal of Solid State Chemistry</i> , 2011 , 184, 1176-1185	3.3	26
139	Phase stability and chemical composition dependence of the thermoelectric properties of the type-I clathrate Ba8AlxSi46\(\) (8\(\mathbb{M} \) (8\(\mathbb{M} \) (5). Journal of Solid State Chemistry, 2011 , 184, 1293-1303	3.3	62
138	Reduction of lattice thermal conductivity from planar faults in the layered Zintl compound SrZnSb2. Journal of Applied Physics, 2011 , 109, 043509-043509-5	2.5	10
137	Improved carrier concentration control in Zn-doped Ca5Al2Sb6. <i>Journal of Applied Physics</i> , 2011 , 110, 013721	2.5	48
136	Maximum performance in self-compatible thermoelectric elements. <i>Journal of Materials Research</i> , 2011 , 26, 1933-1939	2.5	21
135	Nanostructure formation in bulk thermoelectric compounds in the pseudo binary PbTe-Sb2Te3 system. <i>Materials Research Society Symposia Proceedings</i> , 2010 , 1267, 1		4
134	Zintl Chemistry for Designing High Efficiency Thermoelectric Materials (Chemistry of Materials, 2010 , 22, 624-634	9.6	482
133	High-Temperature Transport Properties of the Zintl Phases Yb11GaSb9 and Yb11InSb9[] <i>Chemistry of Materials</i> , 2010 , 22, 935-941	9.6	29
132	Composition and the thermoelectric performance of 眍n4Sb3. <i>Journal of Materials Chemistry</i> , 2010 , 20, 9877		125
131	Electronic structure and transport in thermoelectric compounds AZn2Sb2 (A = Sr, Ca, Yb, Eu). <i>Dalton Transactions</i> , 2010 , 39, 1046-54	4.3	166
130	Optimizing Thermoelectric Efficiency in La3\(\mathbb{I}\)Te4 via Yb Substitution. <i>Chemistry of Materials</i> , 2010 , 22, 2995-2999	9.6	43
129	Electron and phonon scattering in the high-temperature thermoelectric La3Te4团Mz (M=Sb,Bi). <i>Physical Review B</i> , 2010 , 81,	3.3	38

(2009-2010)

128	Synthesis, structure, magnetism, and high temperature thermoelectric properties of Ge doped Yb14MnSb11. <i>Dalton Transactions</i> , 2010 , 39, 1055-62	4.3	36	
127	Complex thermoelectric materials 2010 , 101-110		86	
126	Effective thermal conductivity of polycrystalline materials with randomly oriented superlattice grains. <i>Journal of Applied Physics</i> , 2010 , 108, 034310	2.5	45	
125	Microstructure Size Control through Cooling Rate in Thermoelectric PbTe-Sb2Te3 Composites. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2010 , 41, 641-650	2.3	14	
124	Effect of Ca Doping on the Thermoelectric Performance of Yb14MnSb11. <i>Journal of Electronic Materials</i> , 2010 , 39, 1373-1375	1.9	35	
123	High-resolution nanostructural investigation of Zn4Sb3 alloys. <i>Scripta Materialia</i> , 2010 , 63, 784-787	5.6	34	
122	The Zintl Compound Ca5Al2Sb6 for Low-Cost Thermoelectric Power Generation. <i>Advanced Functional Materials</i> , 2010 , 20, 4375-4380	15.6	156	
121	The compatibility approach in the classical theory of thermoelectricity seen from the perspective of variational calculus. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2010 , 207, 760-765	1.6	23	
120	Power-related compatibility and maximum electrical power output of a thermogenerator. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2010 , 207, 2399-2406	1.6	11	
119	Transport properties of the layered Zintl compound SrZnSb2. <i>Journal of Applied Physics</i> , 2009 , 106, 013	7 <u>0.6</u>	31	
118	Characterization and analysis of thermoelectric transport in n-type Ba8Ga16\(\mathbb{Q} \)Ge30+x. <i>Physical Review B</i> , 2009 , 80,	3.3	315	
117	Thermal stability and thermoelectric properties of p-type Ba8Ga16Ge30 clathrates. <i>Journal of Applied Physics</i> , 2009 , 106, 074509	2.5	37	
116	Complex thermoelectric materials 2009 , 50-59		1	
115	In situ observation of eutectoid reaction forming a PbTeBb2Te3 thermoelectric nanocomposite by synchrotron X-ray diffraction. <i>Scripta Materialia</i> , 2009 , 60, 321-324	5.6	25	
114	Thermal Stability and Phase Purity in Polycrystalline Ba8Ga x Ge46\(\mathbb{R}\). Journal of Electronic Materials , 2009 , 38, 1423-1426	1.9	9	
113	Structure and high-temperature thermoelectric properties of SrAl2Si2. <i>Journal of Solid State Chemistry</i> , 2009 , 182, 240-245	3.3	36	
112	Interfaces in bulk thermoelectric materials. <i>Current Opinion in Colloid and Interface Science</i> , 2009 , 14, 226-235	7.6	320	
	Formation of Sb2Te3 WidmanstEten precipitates in thermoelectric PbTe. <i>Acta Materialia</i> , 2009 , 57, 666-			

110	Structure, Heat Capacity, and High-Temperature Thermal Properties of Yb14Mn1\(\mathbb{I}\)AlxSb11. <i>Chemistry of Materials</i> , 2009 , 21, 1354-1360	9.6	84
109	Influence of band structure on the large thermoelectric performance of lanthanum telluride. <i>Physical Review B</i> , 2009 , 79,	3.3	117
108	Phonon density of states and heat capacity of La3\(\mathbb{\text{ITe4}}\). Physical Review B, 2009 , 80,	3.3	78
107	Nanoscale inclusions in the phonon glass thermoelectric material Zn4Sb3. <i>Philosophical Magazine Letters</i> , 2009 , 89, 362-369	1	27
106	Thermoelectric properties of p-type LiZnSb: Assessment of ab initio calculations. <i>Journal of Applied Physics</i> , 2009 , 105, 063701	2.5	53
105	Thermoelectric Energy Harvesting 2009 , 325-336		39
104	Growth of Ca-Germanide and Ca-Silicide Crystals by Mechanical Alloying. <i>E-Journal of Surface Science and Nanotechnology</i> , 2009 , 7, 129-133	0.7	5
103	Complex thermoelectric materials. <i>Nature Materials</i> , 2008 , 7, 105-14	27	7422
102	Thermoelectric performance of lanthanum telluride produced via mechanical alloying. <i>Physical Review B</i> , 2008 , 78,	3.3	201
101	Improved Thermoelectric Performance in Yb14Mn1\(\mathbb{Z}\)TnxSb11 by the Reduction of Spin-Disorder Scattering. <i>Chemistry of Materials</i> , 2008 , 20, 3412-3419	9.6	124
100	Synthesis, structure, and high-temperature thermoelectric properties of boron-doped Ba8Al14Si31 clathrate I phases. <i>Inorganic Chemistry</i> , 2008 , 47, 8204-12	5.1	47
99	Evaluation of true interlamellar spacing from microstructural observations. <i>Journal of Materials Research</i> , 2008 , 23, 2538-2544	2.5	7
98	Lanthanum Telluride: Mechanochemical Synthesis of a Refractory Thermoelectric Material. <i>AIP Conference Proceedings</i> , 2008 ,	O	4
97	High temperature thermoelectric efficiency in Ba8Ga16Ge30. Physical Review B, 2008, 77,	3.3	129
96	High thermoelectric efficiency in lanthanum doped Yb14MnSb11. <i>Applied Physics Letters</i> , 2008 , 93, 062	1 3 Ω	107
95	Integrated electroplated heat spreaders for high power semiconductor lasers. <i>Journal of Applied Physics</i> , 2008 , 104, 064907	2.5	2
94	Traversing the Metal-Insulator Transition in a Zintl Phase: Rational Enhancement of Thermoelectric Efficiency in Yb14Mn1\(\text{AlxSb11}.\) Advanced Functional Materials, 2008 , 18, 2795-2800	15.6	262
93	Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. <i>Science</i> , 2008 , 321, 554-7	33.3	2900

92	Small Thermoelectric Generators. <i>Electrochemical Society Interface</i> , 2008 , 17, 54-56	3.6	79
91	Antimony-121 Mssbauer spectral study of alpha-Zn4Sb3. <i>Inorganic Chemistry</i> , 2007 , 46, 767-70	5.1	7
90	Solidification processing of alloys in the pseudo-binary PbTeBb2Te3 system. <i>Acta Materialia</i> , 2007 , 55, 1227-1239	8.4	62
89	Synthesis, Structure, and High Temperature Thermoelectric Properties of Yb11Sb9.3Ge0.5. <i>Zeitschrift Fur Anorganische Und Allgemeine Chemie</i> , 2007 , 633, 1587-1594	1.3	21
88	Local structure of interstitial Zn in 取n4Sb3. <i>Physica Status Solidi - Rapid Research Letters</i> , 2007 , 1, 253-25	5 5 .5	28
87	Compatibility factor for the power output of a thermogenerator. <i>Physica Status Solidi - Rapid Research Letters</i> , 2007 , 1, 250-252	2.5	15
86	Synthesis and thermoelectric properties of YbSb2Te4. <i>Physica Status Solidi - Rapid Research Letters</i> , 2007 , 1, 265-267	2.5	9
85	Self-Assembled Nanometer Lamellae of Thermoelectric PbTe and Sb2Te3 with Epitaxy-like Interfaces. <i>Chemistry of Materials</i> , 2007 , 19, 763-767	9.6	129
84	Development and Evolution of Nanostructure in Bulk Thermoelectric Pb-Te-Sb Alloys. <i>Journal of Electronic Materials</i> , 2007 , 36, 716-720	1.9	22
83	High-temperature thermoelectric studies of A11Sb10 (A=Yb, Ca). <i>Journal of Solid State Chemistry</i> , 2007 , 180, 1414-1420	3.3	50
82	Nanoscale Btructural domains in the phonon-glass thermoelectric material A n4Sb3. <i>Physical Review B</i> , 2007 , 75,	3.3	28
81	High temperature thermoelectric properties of Mo3Sb7\(\mathbb{N}\)Tex for x=1.6 and 1.5. <i>Journal of Alloys and Compounds</i> , 2007 , 427, 324-329	5.7	38
80	Synthesis and thermoelectric properties of alloys. <i>Journal of Alloys and Compounds</i> , 2007 , 431, 262-268	5.7	10
79	Lattice thermal conductivity of self-assembled PbTe-Sb2Te3 composites with nanometer lamellae 2007 ,		2
78	Zintl phases for thermoelectric devices. <i>Dalton Transactions</i> , 2007 , 2099-107	4.3	413
77	Effect of disorder on the thermal transport and elastic properties in thermoelectric Zn4Sb3. <i>Physical Review B</i> , 2006 , 74,	3.3	59
76	Thermoelectric Properties and Microstructure of Ba8Al14Si31 and EuBa7Al13Si33. <i>Chemistry of Materials</i> , 2006 , 18, 4939-4945	9.6	45
75	Yb14MnSb11: New High Efficiency Thermoelectric Material for Power Generation. <i>Chemistry of Materials</i> , 2006 , 18, 1873-1877	9.6	650

74	Thermoelectric properties and microstructure of Mg3Sb2. <i>Journal of Solid State Chemistry</i> , 2006 , 179, 2252-2257	3.3	118
73	Thermoelectric and structural properties of a new Chevrel phase: Ti0.3Mo5RuSe8. <i>Journal of Solid State Chemistry</i> , 2006 , 179, 2158-2163	3.3	15
72	Macroscopic thermoelectric inhomogeneities in (AgSbTe2)x(PbTe)1☑. <i>Applied Physics Letters</i> , 2005 , 87, 171903	3.4	78
71	Nonstoichiometry, Structure, and Electrical Properties of BrPrO3II <i>Chemistry of Materials</i> , 2005 , 17, 5146-5154	9.6	4
70	Transient cooling of thermoelectric coolers and its applications for microdevices. <i>Energy Conversion and Management</i> , 2005 , 46, 1407-1421	10.6	94
69	Zintl Phases as Thermoelectric Materials: Tuned Transport Properties of the Compounds CaxYb1\(\text{Z} \) Zn2Sb2. <i>Advanced Functional Materials</i> , 2005 , 15, 1860-1864	15.6	323
68	Advanced Superlattice BiTe-PbTe/TAGS Milliwatt Radioisotope Power System. <i>AIP Conference Proceedings</i> , 2005 ,	Ο	2
67	Thermoelectric Power Generation 2005 , 9-1-9-26		6
66	The Structure of High-performance Thermoelectric Material, .BETAZn4Sb3 by Maximum Entropy Method. <i>Nihon Kessho Gakkaishi</i> , 2005 , 47, 204-210	О	
65	Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties. <i>Nature Materials</i> , 2004 , 3, 458-63	27	690
64	Interstitial Zn atoms do the trick in thermoelectric zinc antimonide, Zn4Sb3: a combined maximum entropy method X-ray electron density and ab initio electronic structure study. <i>Chemistry - A European Journal</i> , 2004 , 10, 3861-70	4.8	151
63	Multistage thermoelectric microcoolers. <i>Journal of Applied Physics</i> , 2004 , 95, 8226-8232	2.5	35
62	Application of the compatibility factor to the design of segmented and cascaded thermoelectric generators. <i>Applied Physics Letters</i> , 2004 , 84, 2436-2438	3.4	192
61	Thermoelectric microdevice fabricated by a MEMS-like electrochemical process. <i>Nature Materials</i> , 2003 , 2, 528-31	27	371
60	Direct Electrodeposition of Highly Dense 50 nm Bi2Te3-ySey Nanowire Arrays. <i>Nano Letters</i> , 2003 , 3, 973-977	11.5	140
59	Thermoelectric efficiency and compatibility. <i>Physical Review Letters</i> , 2003 , 91, 148301	7.4	409
58	Using the Compatibility Factor to Design High Efficiency Segmented Thermoelectric Generators. <i>Materials Research Society Symposia Proceedings</i> , 2003 , 793, 118		2
57	Preparation and thermoelectric properties of CeFe4As12. <i>Journal of Applied Physics</i> , 2002 , 91, 1344-13	48 .5	13

56	Supercooling of Peltier cooler using a current pulse. Journal of Applied Physics, 2002, 92, 1564-1569	2.5	115
55	Thermoelectric Properties of Chalcogenides with the Spinel Structure. <i>Materials Research Innovations</i> , 2001 , 5, 67-73	1.9	52
54	Geometric Effects on the Transient Cooling of Thermoelectric Coolers. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 691, 1		3
53	Thermoelectric Properties of Selenide Spinels. <i>Materials Research Society Symposia Proceedings</i> , 2000 , 626, 331		4
52	High efficiency segmented thermoelectric unicouples. AIP Conference Proceedings, 2000,	О	4
51	Thermoelectric Properties of Some Cobalt Phosphide-Arsenide Compounds. <i>Materials Research Society Symposia Proceedings</i> , 2000 , 626, 141		6
50	Thermoelectric properties of the incommensurate layered semiconductor GexNbTe2. <i>Journal of Materials Research</i> , 2000 , 15, 2789-2793	2.5	2
49	Thermoelectric, transport, and magnetic properties of the polaron semiconductor FexCr3\(\mathbb{I}\)Se4. <i>Physical Review B</i> , 2000 , 62, 10185-10193	3.3	44
48	Miniaturized radioisotope solid state power sources. AIP Conference Proceedings, 2000,	Ο	3
47	Thermoelectric Properties of Some Phosphide Skutterudite Materials. <i>Japanese Journal of Applied Physics</i> , 2000 , 39, 14	1.4	3
46	A New High Efficiency Segmented Thermoelectric Unicouple 1999 ,		11
45	Effects of Magnetization on Hole Localization and MnO6 Octahedra Disorder in Hole-Doped Lanthanum Manganese Perovskites. <i>Journal of Superconductivity and Novel Magnetism</i> , 1999 , 12, 295-2	298	1
44	Potential of Chevrel phases for thermoelectric applications. <i>Solid State Sciences</i> , 1999 , 1, 535-544	3.4	61
43	Preparation and thermoelectric properties of some phosphide skutterudite compounds. <i>Journal of Applied Physics</i> , 1999 , 86, 6213-6217	2.5	48
42	Progress in the development of high efficiency segmented thermoelectric generators 1999,		8
41	Development of Thick-Film Thermoelectric Microcoolers Using Electrochemical Deposition. <i>Materials Research Society Symposia Proceedings</i> , 1998 , 545, 493		27
40	Thermoelectric Properties of Cr3 S4 -Type Selenides. <i>Materials Research Society Symposia Proceedings</i> , 1998 , 545, 333		11
39	Local structure, transport, and rare-earth magnetismin the ferrimagnetic perovskite Gd0.67 Ca0.33 MnO3s. <i>Physical Review B</i> , 1997 , 55, 6453-6459	3.3	129

38	Magnetoconductivity and Hall effects in La0.67Ca0.33MnO3. <i>Applied Physics Letters</i> , 1996 , 69, 4254-42	56.4	55
37	Intrinsic electrical transport and magnetic properties of La0.67Ca0.33MnO3 and La0.67Sr0.33MnO3 MOCVD thin films and bulk material. <i>Physical Review B</i> , 1996 , 53, 14434-14444	3.3	590
36	Anomalous Spin Scattering Effects in the Badly Metallic Itinerant Ferromagnet SrRuO3. <i>Physical Review Letters</i> , 1996 , 77, 2774-2777	7.4	251
35	Evidence of magnetization-dependent polaron distortion in La1-xAxMnO3, A=Ca, Pb. <i>Physical Review B</i> , 1996 , 54, R15606-R15609	3.3	60
34	Critical Transport and Magnetization of La0.67Ca0.3MnO3. <i>Materials Research Society Symposia Proceedings</i> , 1996 , 453, 337		
33	Anneal-tunable Curie temperature and transport of La0.67Ca0.33MnO3. <i>Journal of Applied Physics</i> , 1996 , 80, 5158-5161	2.5	148
32	The Infinite Chain Nitride Na5Ba3N. A One-Dimensional Void Metal?. <i>Journal of the American Chemical Society</i> , 1995 , 117, 1996-9	16.4	43
31	Crystal structure of Ag7Ca2 I new intermetallic structure type. <i>Journal of Alloys and Compounds</i> , 1995 , 223, 65-69	5.7	16
30	Intrinsic Properties of Doped Lanthanum Manganite. <i>Materials Research Society Symposia Proceedings</i> , 1995 , 401, 541		1
29	Crystal structure of barium dihydride, BaH2. <i>Zeitschrift Fur Kristallographie - Crystalline Materials</i> , 1994 , 209, 458-458	1	19
28	Refined Structure and Properties of the Layered Mott Insulator BaCoS2. <i>Journal of Solid State Chemistry</i> , 1994 , 113, 355-361	3.3	23
27	Ab initio studies of complexes of ozone with some positive ions. <i>Chemical Physics Letters</i> , 1994 , 218, 372-376	2.5	9
26	Discrete M6N Octahedra in the Subnitrides Na16 Ba6N and Ag16Ca6N: A Reconsideration of the Ag8Ca3 Structure Type. <i>Angewandte Chemie International Edition in English</i> , 1994 , 33, 689-691		48
25	Reaction of alkali metal intercalated C60 with oxygen: Deintercalation, activation, and decomposition. <i>Advanced Materials</i> , 1994 , 6, 374-376	24	3
24	Dalton communications. The crystal structure of NaBa, an interpenetrating network of sodium tetrahedra and barium octahedra. <i>Journal of the Chemical Society Dalton Transactions</i> , 1994 , 1159		21
23	The New Laves Phase Na2Ba. <i>Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences</i> , 1994 , 49, 189-192	1	22
22	Synthesis, structure, and properties of barium cobalt sulfide (Ba6Co25S27) a perovskite-like superstructure of Co8S6 and Ba6S clusters. <i>Inorganic Chemistry</i> , 1992 , 31, 2107-2110	5.1	9
21	Embedded thermoelectric coolers for semiconductor hot spot cooling		3

	Hot spot cooling using embedded thermoelectric coolers		38
19	Design and optimization of compatible, segmented thermoelectric generators		3
18	Testing of milliwatt power source components		2
17	Thermoelectric properties of n-type polycrystalline Bi/sub x/Sb/sub 2-x/Te/sub 3/ alloys		2
16	Small thermoelectric generators		3
15	Thermoelectric microdevice fabrication process and evaluation at the Jet Propulsion Laboratory (JPL)		3
14	A study of heat sink performance in air and soil for use in a thermoelectric energy harvesting device		22
13	Effects of annealing electrodeposited bismuth telluride films		1
12	Compatibility of segmented thermoelectric generators		14
11			1
10	Solid-state power generation and cooling micro/nanodevices for distributed system architectures		4
9	MEMS thermoelectric microcooler		1
9	MEMS thermoelectric microcooler Development of high efficiency segmented thermoelectric unicouples		1 21
		1.6	1 21 2
8	Development of high efficiency segmented thermoelectric unicouples Understanding the High Thermoelectric Performance of Mg 3 Sb 2 -Mg 3 Bi 2 Alloys. Advanced		
8	Development of high efficiency segmented thermoelectric unicouples Understanding the High Thermoelectric Performance of Mg 3 Sb 2 -Mg 3 Bi 2 Alloys. Advanced Energy and Sustainability Research, 2100208		2
8 7 6	Development of high efficiency segmented thermoelectric unicouples Understanding the High Thermoelectric Performance of Mg 3 Sb 2 -Mg 3 Bi 2 Alloys. Advanced Energy and Sustainability Research, 2100208 Effective Mass from Seebeck Coefficient. Advanced Functional Materials, 2112772 The Importance of Avoided Crossings in Understanding High Valley Degeneracy in Half-Heusler	15.6 6.4	4 3

Retarding Ostwald ripening through Gibbs adsorption and interfacial complexions leads to high-performance SnTe thermoelectrics. *Energy and Environmental Science*,

35.4 19

Considering the Role of Ion Transport in Diffuson-Dominated Thermal Conductivity. *Advanced Energy Materials*, 2200717

21.8 5