GérÃ'me Melaet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7857840/publications.pdf Version: 2024-02-01

CÃODÃ'ME MELAET

#	Article	IF	CITATIONS
1	The effect of aluminum and platinum additives on hydrogen adsorption on mesoporous silicates. Physical Chemistry Chemical Physics, 2018, 20, 12075-12083.	1.3	3
2	Bimetallic Cobalt Nanoparticles (Co–M): Synthesis, Characterization, and Application in the Fischer–Tropsch Process. Topics in Catalysis, 2018, 61, 1002-1015.	1.3	6
3	Platinum and Other Transition Metal Nanoclusters (Pd, Rh) Stabilized by PAMAM Dendrimer as Excellent Heterogeneous Catalysts: Application to the Methylcyclopentane (MCP) Hydrogenative Isomerization. Nano Letters, 2017, 17, 1853-1862.	4.5	60
4	Activation of Tungsten Oxide for Propane Dehydrogenation and Its High Catalytic Activity and Selectivity. Catalysis Letters, 2017, 147, 622-632.	1.4	47
5	Evidence of Structure Sensitivity in the Fischer–Tropsch Reaction on Model Cobalt Nanoparticles by Timeâ€Resolved Chemical Transient Kinetics. Angewandte Chemie - International Edition, 2017, 56, 7415-7419.	7.2	44
6	Evidence of Structure Sensitivity in the Fischer–Tropsch Reaction on Model Cobalt Nanoparticles by Timeâ€Resolved Chemical Transient Kinetics. Angewandte Chemie, 2017, 129, 7523-7527.	1.6	5
7	Hydroisomerization of n-hexadecane: remarkable selectivity of mesoporous silica post-synthetically modified with aluminum. Catalysis Science and Technology, 2017, 7, 1756-1765.	2.1	15
8	Oxidative coupling of methane (OCM): Effect of noble metal (M = Pt, Ir, Rh) doping on the performance of mesoporous silica MCF-17 supported MnxOy-Na2WO4 catalysts. Applied Catalysis A: General, 2017, 545, 17-23.	2.2	29
9	Product distribution change in the early stages of carbon monoxide hydrogenation over cobalt magnesium Fischer-Tropsch catalyst. Catalysis Today, 2016, 272, 69-73.	2.2	11
10	In Situ Spectroscopic Investigation into the Active Sites for Crotonaldehyde Hydrogenation at the Pt Nanoparticle–Co ₃ O ₄ Interface. ACS Catalysis, 2016, 6, 7140-7147.	5.5	48
11	Co–Rh Nanoparticles for the Hydrogenation of Carbon Monoxide: Catalytic Performance Towards Alcohol Production and Ambient Pressure X-Ray Photoelectron Spectroscopy Study. Catalysis Letters, 2016, 146, 1574-1580.	1.4	14
12	Soft X-ray spectroscopy studies of adsorption and reaction of CO in the presence of H2 over 6 nm MnO nanoparticles supported on mesoporous Co3O4. Surface Science, 2016, 648, 14-22.	0.8	5
13	Inâ€Situ Microscopy and Spectroscopy Applied to Surfaces at Work. ChemCatChem, 2015, 7, 3625-3638.	1.8	28
14	High-performance hybrid oxide catalyst of manganese and cobalt for low-pressure methanol synthesis. Nature Communications, 2015, 6, 6538.	5.8	135
15	Evidence of Highly Active Cobalt Oxide Catalyst for the Fischer–Tropsch Synthesis and CO ₂ Hydrogenation. Journal of the American Chemical Society, 2014, 136, 2260-2263.	6.6	211
16	Cobalt Particle Size Effects in the Fischer–Tropsch Synthesis and in the Hydrogenation of CO2 Studied with Nanoparticle Model Catalysts on Silica. Topics in Catalysis, 2014, 57, 500-507.	1.3	64
17	Time-Resolved (2 s) Study of the Initial Steps of the Catalytic Hydrogenation of CO: From Branched Isomers to Unsaturated Molecules. Journal of Physical Chemistry C, 2014, 118, 26921-26925.	1.5	7
18	XPS study of the surface chemical state of a Pd/(SiO2+TiO2) catalyst after methane oxidation and SO2 treatment. Journal of Catalysis, 2014, 312, 1-11.	3.1	135

Gérôme Melaet

#	Article	IF	CITATIONS
19	Structure and Chemical State of the Pt(557) Surface during Hydrogen Oxidation Reaction Studied by in Situ Scanning Tunneling Microscopy and X-ray Photoelectron Spectroscopy. Journal of the American Chemical Society, 2013, 135, 12560-12563.	6.6	25
20	Promotion of Hydrogenation of Organic Molecules by Incorporating Iron into Platinum Nanoparticle Catalysts: Displacement of Inactive Reaction Intermediates. ACS Catalysis, 2013, 3, 2371-2375.	5.5	22
21	Surface Composition Changes of Redox Stabilized Bimetallic CoCu Nanoparticles Supported on Silica under H ₂ and O ₂ Atmospheres and During Reaction between CO ₂ and H ₂ : In Situ X-ray Spectroscopic Characterization. Journal of Physical Chemistry C, 2013. 117. 21803-21809.	1.5	31
22	Enhanced CO Oxidation Rates at the Interface of Mesoporous Oxides and Pt Nanoparticles. Journal of the American Chemical Society, 2013, 135, 16689-16696.	6.6	361
23	Pt-Mediated Reversible Reduction and Expansion of CeO ₂ in Pt Nanoparticle/Mesoporous CeO ₂ Catalyst: In Situ X-ray Spectroscopy and Diffraction Studies under Redox (H ₂ and O ₂) Atmospheres. Journal of Physical Chemistry C, 2013, 117, 26608-26616.	1.5	67
24	lsomerization of n-Hexane Catalyzed by Supported Monodisperse PtRh Bimetallic Nanoparticles. Catalysis Letters, 2013, 143, 907-911.	1.4	20
25	Combined sulfating and non-sulfating support to prevent water and sulfur poisoning of Pd catalysts for methane combustion. Chemical Communications, 2010, 46, 6317.	2.2	29
26	Oxidation of CH4 over Pd supported on TiO2-doped SiO2: Effect of Ti(IV) loading and influence of SO2. Applied Catalysis B: Environmental, 2009, 88, 430-437.	10.8	68
27	CO Oxidation Activity of Ag/TiO2 Catalysts Prepared via Oxalate Co-precipitation. Catalysis Letters, 2008, 124, 74-79.	1.4	26