
Atsuhiro Tanaka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7857781/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bifunctions of a Cr hydroxide layer for water splitting over a platinized Au/TiO2 plasmonic photocatalyst under visible light irradiation. Catalysis Today, 2023, 410, 323-331.	4.4	5
2	Bromine Substitution of Organic Modifiers Fixed on a Titanium(IV) Oxide Photocatalyst: A New Strategy Accelerating Visible Lightâ€Induced Hydrogenâ€Free Hydrogenation of Furfural to Furfuryl Alcohol. ChemCatChem, 2022, 14, .	3.7	3
3	Glycerol as an excellent hydrogen and electron source for photocatalytic hydrogenation of nitrobenzene in water. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 430, 113963.	3.9	4
4	AuO _{<i>x</i>} Surface Oxide Layer as a Hole-Transferring Cocatalyst for Water Oxidation over Au Nanoparticle-Decorated TiO ₂ Photocatalysts. ACS Applied Nano Materials, 2022, 5, 8982-8990.	5.0	1
5	Modification of gold nanoparticles with a hole-transferring cocatalyst: a new strategy for plasmonic water splitting under irradiation of visible light. Sustainable Energy and Fuels, 2021, 5, 3303-3311.	4.9	7
6	Effect of transition metal oxide cocatalyst on the photocatalytic activity of Ag loaded CaTiO3 for CO2 reduction with water and water splitting. Applied Catalysis B: Environmental, 2021, 286, 119899.	20.2	73
7	Simultaneous Formation of CO and H ₂ O ₂ from CO ₂ and H ₂ O with a Ag–MnO _{<i>x</i>} /CaTiO ₃ Photocatalyst. ACS Applied Energy Materials, 2021, 4, 6500-6510.	5.1	20
8	Controlling the performance of a silver co-catalyst by a palladium core in TiO2-photocatalyzed alkyne semihydrogenation and H2 production. Applied Catalysis A: General, 2021, 624, 118331.	4.3	4
9	A Pd-Bi Dual-Cocatalyst-Loaded Gallium Oxide Photocatalyst for Selective and Stable Nonoxidative Coupling of Methane. ACS Catalysis, 2021, 11, 13768-13781.	11.2	28
10	A simple method for deoxygenation of amine oxides to amines free from precious metals and undesirable reductants: Photocatalytic reaction in alcohol suspensions of TiO2 under solar light. Applied Catalysis A: General, 2020, 591, 117412.	4.3	3
11	Accelerated Semihydrogenation of Alkynes over a Copper/Palladium/Titaniumâ€(IV) Oxide Photocatalyst Free from Poison and H ₂ Gas. ChemCatChem, 2020, 12, 1609-1616.	3.7	12
12	Photocatalytic hydrogenation of nitrobenzenes to anilines over noble metal-free TiO2 utilizing methylamine as a hydrogen donor. Applied Catalysis B: Environmental, 2020, 268, 118446.	20.2	33
13	Deoxygenation of Pyridine N-Oxides in Water at Room Temperature Using TiO ₂ Photocatalyst and Oxalic Acid as a Clean Hydrogen Source. Industrial & Engineering Chemistry Research, 2020, 59, 11412-11418.	3.7	9
14	A ruthenium and palladium bimetallic system superior to a rhodium co-catalyst for TiO2-photocatalyzed ring hydrogenation of aniline to cyclohexylamine. Journal of Catalysis, 2020, 389, 212-217.	6.2	12
15	Photocatalytic Reductive Defluorination of Fluorinated Compounds in Aqueous Alcohol Suspensions of a Metalâ€loaded Titanium(IV) Oxide. ChemCatChem, 2020, 12, 3298-3305.	3.7	6
16	Facet-selective deposition of a silver–manganese dual cocatalyst on potassium hexatitanate photocatalyst for highly selective reduction of carbon dioxide by water. Applied Catalysis B: Environmental, 2020, 274, 119085.	20.2	37
17	Synthesis of Disk-Shaped Tungsten(VI) Oxide Particles with Various Physical Properties for Mineralization of Acetic Acid in Water Under Irradiation of Visible Light. Journal of Nanoscience and Nanotechnology, 2020, 20, 4131-4137.	0.9	1
18	Cocatalyst-free Plasmonic H2 Production over Au/Ta2O5 under Irradiation of Visible Light. Chemistry Letters, 2019, 48, 939-942.	1.3	7

Ατςυμικό Τανακά

#	Article	IF	CITATIONS
19	Hydrogen- and noble metal-free conversion of nitro aromatics to amino aromatics having reducible groups over an organically modified TiO ₂ photocatalyst under visible light irradiation. Catalysis Science and Technology, 2019, 9, 966-973.	4.1	18
20	Effect of conduction band potential on cocatalyst-free plasmonic H2 evolution over Au loaded on Sr2+-doped CeO2. Catalysis Science and Technology, 2019, 9, 3047-3054.	4.1	7
21	Visible light-induced diastereoselective semihydrogenation of alkynes to cis-alkenes over an organically modified titanium(IV) oxide photocatalyst having a metal co-catalyst. Journal of Catalysis, 2019, 374, 36-42.	6.2	19
22	Photocatalytic Selective Ring Hydrogenation of Phenol to Cyclohexanone over a Palladiumâ€Loaded Titanium(IV) Oxide under Hydrogenâ€Free Conditions. ChemPhotoChem, 2019, 3, 559-567.	3.0	9
23	Hydrogen-free ring hydrogenation of phenol to cyclohexanol over a rhodium-loaded titanium(IV) oxide photocatalyst. Applied Catalysis A: General, 2019, 578, 83-88.	4.3	17
24	A silver–manganese dual co-catalyst for selective reduction of carbon dioxide into carbon monoxide over a potassium hexatitanate photocatalyst with water. Chemical Communications, 2019, 55, 13514-13517.	4.1	39
25	Photocatalytic Selective Hydrogenation of Furfural to Furfuryl Alcohol over Titanium(IV) Oxide. Chemistry Letters, 2018, 47, 254-256.	1.3	18
26	Ring hydrogenation of aromatic compounds in aqueous suspensions of an Rh-loaded TiO ₂ photocatalyst without use of H ₂ gas. Catalysis Science and Technology, 2018, 8, 139-146.	4.1	23
27	Titanium(<scp>iv</scp>) oxide having a copper co-catalyst: a new type of semihydrogenation photocatalyst working efficiently at an elevated temperature under hydrogen-free and poison-free conditions. Physical Chemistry Chemical Physics, 2018, 20, 19321-19325.	2.8	15
28	Photocatalytic chemoselective cleavage of C–O bonds under hydrogen gas- and acid-free conditions. Chemical Communications, 2018, 54, 7298-7301.	4.1	5
29	Additiveâ€free Semihydrogenation of an Alkynyl Group to an Alkenyl Group over Pdâ^'TiO ₂ Photocatalyst Utilizing Temporary Inâ€situ Deactivation. ChemCatChem, 2018, 10, 3605-3611.	3.7	5
30	Heterogeneous Meerweinâ€Ponndorfâ€Verley–type Reduction of Aromatic Aldehydes Having Other Reducible Functional Groups over a TiO ₂ Photocatalyst. ChemistrySelect, 2017, 2, 2293-2299.	1.5	9
31	A very simple method for the preparation of Au/TiO ₂ plasmonic photocatalysts working under irradiation of visible light in the range of 600–700 nm. Chemical Communications, 2017, 53, 4759-4762.	4.1	39
32	Visible light-induced heterogeneous Meerwein–Ponndorf–Verley-type reduction of an aldehyde group over an organically modified titanium dioxide photocatalyst. Chemical Communications, 2017, 53, 4215-4218.	4.1	29
33	Visible light-induced water splitting in an aqueous suspension of a plasmonic Au/TiO ₂ photocatalyst with metal co-catalysts. Chemical Science, 2017, 8, 2574-2580.	7.4	130
34	Photocatalytic hydrogenation of furan to tetrahydrofuran in alcoholic suspensions of metal-loaded titanium(<scp>iv</scp>) oxide without addition of hydrogen gas. Physical Chemistry Chemical Physics, 2017, 19, 20206-20212.	2.8	19
35	Meerwein–Ponndorf–Verley-type Reduction over a Metal-free TiO2 Photocatalyst in Alcohol: Chemoselective Hydrogenation of Chlorobenzaldehyde to Chlorobenzyl Alcohol. Chemistry Letters, 2016, 45, 985-987.	1.3	15
36	Control of Surface Plasmon Resonance of Au/SnO ₂ by Modification with Ag and Cu for Photoinduced Reactions under Visible‣ight Irradiation over a Wide Range. Chemistry - A European Journal, 2016, 22, 4592-4599.	3.3	15

Ατςυμικό Τανακά

#	Article	IF	CITATIONS
37	Metal ion-modified TiO2 photocatalysts having controllable oxidative performance under irradiation of visible light. Applied Catalysis A: General, 2016, 521, 202-207.	4.3	13
38	Synergy Effect of Photoabsorption due to Band-gap Excitation and Surface Plasmon Resonance on Selective Photocatalytic Oxidation of Alcohols to Ketones and Aldehydes over Silver-deposited Silver Iodide. Chemistry Letters, 2015, 44, 518-520.	1.3	5
39	Photocatalytic chemoselective reduction of epoxides to alkenes along with formation of ketones in alcoholic suspensions of silver-loaded titanium(<scp>iv</scp>) oxide at room temperature without the use of reducing gases. Chemical Communications, 2014, 50, 4558-4560.	4.1	40
40	Visible-Light-Induced Hydrogen and Oxygen Formation over Pt/Au/WO ₃ Photocatalyst Utilizing Two Types of Photoabsorption Due to Surface Plasmon Resonance and Band-Gap Excitation. Journal of the American Chemical Society, 2014, 136, 586-589.	13.7	274
41	Selective oxidation of alcohols in aqueous suspensions of rhodium ion-modified TiO ₂ photocatalysts under irradiation of visible light. Physical Chemistry Chemical Physics, 2014, 16, 12554-12559.	2.8	36
42	Photocatalytic reactions under irradiation of visible light over gold nanoparticles supported on titanium(<scp>iv</scp>) oxide powder prepared by using a multi-step photodeposition method. Catalysis Science and Technology, 2014, 4, 1931-1938.	4.1	19
43	Photocatalytic hydrogenation of alkenes to alkanes in alcoholic suspensions of palladium-loaded titanium(<scp>iv</scp>) oxide without the use of hydrogen gas. RSC Advances, 2014, 4, 19883-19886.	3.6	48
44	Simultaneous and Stoichiometric Water Oxidation and Cr(VI) Reduction in Aqueous Suspensions of Functionalized Plasmonic Photocatalyst Au/TiO ₂ –Pt under Irradiation of Green Light. ACS Catalysis, 2013, 3, 1886-1891.	11.2	104
45	Functionalization of Au/TiO ₂ Plasmonic Photocatalysts with Pd by Formation of a Core–Shell Structure for Effective Dechlorination of Chlorobenzene under Irradiation of Visible Light. Journal of Physical Chemistry C, 2013, 117, 16983-16989.	3.1	96
46	Preparation of Au/TiO ₂ with Metal Cocatalysts Exhibiting Strong Surface Plasmon Resonance Effective for Photoinduced Hydrogen Formation under Irradiation of Visible Light. ACS Catalysis, 2013, 3, 79-85.	11.2	304
47	Functionalization of a plasmonic Au/TiO2 photocatalyst with an Ag co-catalyst for quantitative reduction of nitrobenzene to aniline in 2-propanol suspensions under irradiation of visible light. Chemical Communications, 2013, 49, 2551.	4.1	116
48	Non-linear photocatalytic reaction induced by visible-light surface-plasmon resonance absorption of gold nanoparticles loaded on titania particles. Chemical Communications, 2013, 49, 3419.	4.1	31
49	Effects of Copper(II) Oxide Addition and Red Light Irradiation on Photocatalytic Activity of Indium Oxide under Irradiation of Visible Light. Chemistry Letters, 2013, 42, 419-421.	1.3	4
50	Gold–Titanium(IV) Oxide Plasmonic Photocatalysts Prepared by a Colloid-Photodeposition Method: Correlation Between Physical Properties and Photocatalytic Activities. Langmuir, 2012, 28, 13105-13111.	3.5	77
51	Preparation of Au/TiO2 exhibiting strong surface plasmon resonance effective for photoinduced hydrogen formation from organic and inorganic compounds under irradiation of visible light. Catalysis Science and Technology, 2012, 2, 907.	4.1	73
52	Preparation of Au/CeO ₂ Exhibiting Strong Surface Plasmon Resonance Effective for Selective or Chemoselective Oxidation of Alcohols to Aldehydes or Ketones in Aqueous Suspensions under Irradiation by Green Light. Journal of the American Chemical Society, 2012, 134, 14526-14533.	13.7	367
53	Selective photocatalytic oxidation of aromatic alcohols to aldehydes in an aqueous suspension of gold nanoparticles supported on cerium(iv) oxide under irradiation of green light. Chemical Communications, 2011, 47, 10446.	4.1	113
54	Gold and Copper Nanoparticles Supported on Cerium(IV) Oxide—A Photocatalyst Mineralizing Organic Acids under Red Light Irradiation. ChemCatChem, 2011, 3, 1619-1623.	3.7	38

Ατςυμικό Τανακά

#	Article	IF	CITATIONS
55	Gold nanoparticles supported on cerium(IV) oxide powder for mineralization of organic acids in aqueous suspensions under irradiation of visible light of λ=530nm. Applied Catalysis A: General, 2011, 397, 121-126.	4.3	69
56	Mineralization of organic acids in aqueous suspensions of gold nanoparticles supported on cerium(iv) oxide powder under visible light irradiation. Chemical Communications, 2010, 46, 1287.	4.1	133
57	Sorting of Peroxisomal and Mitochondrial Carnitine Acetyltransferase Isozymes in the Diploid Yeast, Candida tropicalis. Cell Biochemistry and Biophysics, 2000, 32, 139-146.	1.8	4
58	Enzymatic synthesis of silicon-containing dipeptides with 3-trimethylsilylalanine. Applied Microbiology and Biotechnology, 1999, 51, 470-473.	3.6	10
59	Inhibition of thermolysin by 3-trimethylsilylalanine derivatives. Applied Microbiology and Biotechnology, 1999, 53, 19-22.	3.6	14
60	Expression of the SNF1 gene from Candida tropicalis is required for growth on various carbon sources, including glucose. Archives of Microbiology, 1999, 172, 256-263.	2.2	12
61	Enzymatic preparation of d - p  -trimethylsilylphenylalanine. Applied Microbiology and Biotechnology, 1997, 47, 114-119.	3.6	16
62	Enzymatic preparation of optically active 3-trimethylsilylalanine. Applied Microbiology and Biotechnology, 1996, 45, 51-55.	3.6	31
63	3-Ketoacyl CoA Thiolases of a Yeast, Candida tropicalis. Properties and Functions. Annals of the New York Academy of Sciences, 1995, 750, 39-43.	3.8	1
64	High-performance continuous operation for enanthioselective esterification of menthol by use of acid anhydride and free lipase in organic solvent. Applied Microbiology and Biotechnology, 1995, 43, 639-643.	3.6	12
65	A novel promoter, derived from the isocitrate lyase gene of Candida tropicalis, inducible with acetate in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 1995, 43, 489-492.	3.6	41
66	A novel promoter, derived from the isocitrate lyase gene of Candida tropicalis, inducible with acetate in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 1995, 43, 489-492.	3.6	4
67	Efficient kinetic resolution of dl -menthol by lipase-catalyzed enantioselective esterification with acid anhydride in fed-batch reactor. Applied Microbiology and Biotechnology, 1995, 43, 402-407.	3.6	3
68	Enantioselective dehydrogenation of β-hydroxysilanes by horse liver alcohol dehydrogenase with a novel in-situ NAD+ regeneration system. Applied Microbiology and Biotechnology, 1994, 41, 219-224.	3.6	25
69	Application of immobilized growing cells. , 1990, 42, 97-131.		26
70	Peroxisomes of alkane-utilizing yeasts metabolic functions and practical aspects. Acta Biotechnologica, 1983, 3, 327-337.	0.9	4
71	Bioconversion of lipophilic compounds by immobilized microbial cells in organic solvents. Acta Biotechnologica, 1981, 1, 339-350.	0.9	22
72	Title is missing!. Die Makromolekulare Chemie, 1962, 54, 226-229.	1.1	15