Samrand Saeidi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7857755/publications.pdf

Version: 2024-02-01

361045 433756 1,995 31 20 31 citations h-index g-index papers 31 31 31 2516 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Optical properties and thermal stability evaluation of solar absorbers enhanced by nanostructured selective coating films. Powder Technology, 2021, 377, 939-957.	2.1	28
2	Mixed matrix membranes for hydrocarbons separation and recovery: a critical review. Reviews in Chemical Engineering, 2021, 37, 363-406.	2.3	32
3	Catalytic level identification of ZSM-5 on biomass pyrolysis and aromatic hydrocarbon formation. Chemosphere, 2021, 271, 129510.	4.2	33
4	Recent advances in CO2 hydrogenation to value-added products â€" Current challenges and future directions. Progress in Energy and Combustion Science, 2021, 85, 100905.	15.8	134
5	Oxidative dehydrogenation of ethane: catalytic and mechanistic aspects and future trends. Chemical Society Reviews, 2021, 50, 4564-4605.	18.7	119
6	Kinetic parameters estimation via dragonfly algorithm (DA) and comparison of cylindrical and spherical reactors performance for CO2 hydrogenation to hydrocarbons. Energy Conversion and Management, 2020, 226, 113550.	4.4	16
7	Modeling and statistical analysis of the three-side membrane reactor for the optimization of hydrocarbon production from CO2 hydrogenation. Energy Conversion and Management, 2020, 207, 112481.	4.4	18
8	Enhancement of hydrogenation of CO2 to hydrocarbons via In-Situ water removal. International Journal of Hydrogen Energy, 2019, 44, 24759-24781.	3.8	18
9	Effect of operating conditions and effectiveness factor on hydrogenation of CO2 to hydrocarbons. International Journal of Hydrogen Energy, 2019, 44, 28586-28602.	3.8	18
10	Modeling and optimization of hydrogenation of CO2: Estimation of kinetic parameters via Artificial Bee Colony (ABC) and Differential Evolution (DE) algorithms. International Journal of Hydrogen Energy, 2019, 44, 4630-4649.	3.8	35
11	Multi-objective optimisation of steam methane reforming considering stoichiometric ratio indicator for methanol production. Journal of Cleaner Production, 2018, 180, 655-665.	4.6	34
12	Thermal Integration of Sulfuric Acid and Continuous Catalyst Regeneration of Naphtha Reforming Plants. Chemical Engineering and Technology, 2018, 41, 637-655.	0.9	15
13	Selective acid-functionalized mesoporous silica catalyst for conversion of glycerol to monoglycerides: state of the art and future prospects. Reviews in Chemical Engineering, 2018, 34, 239-265.	2.3	16
14	Optimization of Synthesis Conditions of Carbon Nanotubes via Ultrasonic-Assisted Floating Catalyst Deposition Using Response Surface Methodology. Nanomaterials, 2018, 8, 316.	1.9	21
15	Progress in spherical packed-bed reactors: Opportunities for refineries and chemical industries. Chemical Engineering and Processing: Process Intensification, 2018, 132, 16-24.	1.8	19
16	Effect of Operating Conditions on Cryogenic Carbon Dioxide Removal. Energy Technology, 2017, 5, 1588-1598.	1.8	16
17	Mechanisms and kinetics of CO 2 hydrogenation to value-added products: A detailed review on current status and future trends. Renewable and Sustainable Energy Reviews, 2017, 80, 1292-1311.	8.2	175
18	Hydrogen production: Perspectives, separation with special emphasis on kinetics of WGS reaction: A state-of-the-art review. Journal of Industrial and Engineering Chemistry, 2017, 49, 1-25.	2.9	92

#	Article	IF	CITATIONS
19	Comparison of conventional and spherical reactor for the industrial auto-thermal reforming of methane to maximize synthesis gas and minimize CO2. International Journal of Hydrogen Energy, 2017, 42, 19798-19809.	3.8	28
20	Utilising a radial flow, spherical packed-bed reactor for auto thermal steam reforming of methane to achieve a high capacity of H2 production. Chemical Engineering and Processing: Process Intensification, 2017, 120, 258-267.	1.8	15
21	A comparative study between Modified Data Envelopment Analysis and Response Surface Methodology for optimisation of heterogeneous biodiesel production from waste cooking palm oil. Journal of Cleaner Production, 2016, 136, 23-30.	4.6	24
22	Transient natural gas liquefaction process comparison-dynamic heat exchanger under transient changes in flow. Applied Thermal Engineering, 2016, 109, 775-788.	3.0	18
23	Energy and exergy analyses of a novel near zero emission plant: Combination of MATIANT cycle with gasification unit. Applied Thermal Engineering, 2016, 108, 893-904.	3.0	30
24	Photocatalytic conversion and kinetic study of CO2 and CH4 over nitrogen-doped titania nanotube arrays. Journal of Cleaner Production, 2016, 111, 143-154.	4.6	33
25	Photocatalytic conversion of CO2 and CH4 over immobilized titania nanoparticles coated on mesh: Optimization and kinetic study. Applied Energy, 2016, 162, 1171-1185.	5.1	57
26	Recent advances in reactors for low-temperature Fischer-Tropsch synthesis: process intensification perspective. Reviews in Chemical Engineering, $2015, 31, \ldots$	2.3	56
27	A comparative thermodynamic analysis and experimental studies on hydrogen synthesis by supercritical water gasification of glucose. Clean Technologies and Environmental Policy, 2015, 17, 2267-2288.	2.1	28
28	Hydrogenation of CO2 to value-added productsâ€"A review and potential future developments. Journal of CO2 Utilization, 2014, 5, 66-81.	3.3	676
29	Progress in Reactors for High-Temperature Fischer–Tropsch Process: Determination Place of Intensifier Reactor Perspective. International Journal of Chemical Reactor Engineering, 2014, 12, 639-664.	0.6	34
30	Mechanical Properties and Microstructure of VPS and HVOF CoNiCrAlY Coatings. Journal of Thermal Spray Technology, 2011, 20, 1231-1243.	1.6	65
31	The Effect of Heat Treatment on the Oxidation Behavior of HVOF and VPS CoNiCrAlY Coatings. Journal of Thermal Spray Technology, 2009, 18, 209-216.	1.6	92