Josep E Esquerda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7857388/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Accumulation of misfolded <scp>SOD1</scp> outlines distinct patterns of motor neuron pathology and death during disease progression in a <scp>SOD1^{G93A}</scp> mouse model of amyotrophic lateral sclerosis. Brain Pathology, 2022, 32, .	2.1	6
2	Microglial recruitment and mechanisms involved in the disruption of afferent synaptic terminals on spinal cord motor neurons after acute peripheral nerve injury. Glia, 2021, 69, 1216-1240.	2.5	22
3	Cover Image, Volume 69, Issue 5. Glia, 2021, 69, C1.	2.5	0
4	Beneficial effects of dietary supplementation with green tea catechins and cocoa flavanols on aging-related regressive changes in the mouse neuromuscular system. Aging, 2021, 13, 18051-18093.	1.4	4
5	Motoneuron deafferentation and gliosis occur in association with neuromuscular regressive changes during ageing in mice. Journal of Cachexia, Sarcopenia and Muscle, 2020, 11, 1628-1660.	2.9	21
6	Localization and dynamic changes of neuregulinâ€1 at Câ€ŧype synaptic boutons in association with motor neuron injury and repair. FASEB Journal, 2019, 33, 7833-7851.	0.2	30
7	The Y172 Monoclonal Antibody Against p-c-Jun (Ser63) Is a Marker of the Postsynaptic Compartment of C-Type Cholinergic Afferent Synapses on Motoneurons. Frontiers in Cellular Neuroscience, 2019, 13, 582.	1.8	1
8	Glial Activation and Central Synapse Loss, but Not Motoneuron Degeneration, Are Prevented by the Sigma-1 Receptor Agonist PRE-084 in the Smn2B/â^² Mouse Model of Spinal Muscular Atrophy. Journal of Neuropathology and Experimental Neurology, 2018, 77, 577-597.	0.9	30
9	Neuregulin 1-ErbB module in C-bouton synapses on somatic motor neurons: molecular compartmentation and response to peripheral nerve injury. Scientific Reports, 2017, 7, 40155.	1.6	32
10	Chronic Treatment with the AMPK Agonist AICAR Prevents Skeletal Muscle Pathology but Fails to Improve Clinical Outcome in a Mouse Model of Severe Spinal Muscular Atrophy. Neurotherapeutics, 2016, 13, 198-216.	2.1	27
11	Adverse effects of a SOD1-peptide immunotherapy on SOD1G93A mouse slow model of amyotrophic lateral sclerosis. Neuroscience, 2015, 310, 38-50.	1.1	7
12	Accumulation of Misfolded SOD1 in Dorsal Root Ganglion Degenerating Proprioceptive Sensory Neurons of Transgenic Mice with Amyotrophic Lateral Sclerosis. BioMed Research International, 2014, 2014, 1-13.	0.9	38
13	Mechanisms Involved in Spinal Cord Central Synapse Loss in a Mouse Model of Spinal Muscular Atrophy. Journal of Neuropathology and Experimental Neurology, 2014, 73, 519-535.	0.9	57
14	Neuregulinâ€1 is concentrated in the postsynaptic subsurface cistern of Câ€bouton inputs to αâ€motoneurons and altered during motoneuron diseases. FASEB Journal, 2014, 28, 3618-3632.	0.2	65
15	Chronic treatment with lithium does not improve neuromuscular phenotype in a mouse model of severe spinal muscular atrophy. Neuroscience, 2013, 250, 417-433.	1.1	8
16	Synaptic defects in type I spinal muscular atrophy in human development. Journal of Pathology, 2013, 229, 49-61.	2.1	77
17	Immunodetection of Disease-Associated Conformers of Mutant Cu/Zn Superoxide Dismutase 1 Selectively Expressed in Degenerating Neurons in Amyotrophic Lateral Sclerosis. Journal of Neuropathology and Experimental Neurology, 2013, 72, 646-661.	0.9	17
18	Sera from amyotrophic lateral sclerosis patients induce the non-canonical activation of NMDA receptors "in vitro― Neurochemistry International, 2011, 59, 954-964.	1.9	16

JOSEP E ESQUERDA

#	Article	IF	CITATIONS
19	Defective Neuromuscular Junction Organization and Postnatal Myogenesis in Mice With Severe Spinal Muscular Atrophy. Journal of Neuropathology and Experimental Neurology, 2011, 70, 444-461.	0.9	68
20	Increased intramuscular nerve branching and inhibition of programmed cell death of chick embryo motoneurons by immunoglobulins from patients with motoneuron disease. Journal of Neuroimmunology, 2010, 229, 157-168.	1.1	3
21	Neurotoxic Species of Misfolded SOD1 ^{G93A} Recognized by Antibodies Against the P2X ₄ Subunit of the ATP Receptor Accumulate in Damaged Neurons of Transgenic Animal Models of Amyotrophic Lateral Sclerosis. Journal of Neuropathology and Experimental Neurology, 2010. 69. 176-187.	0.9	23
22	Lithium prevents excitotoxic cell death of motoneurons in organotypic slice cultures of spinal cord. Neuroscience, 2010, 165, 1353-1369.	1.1	58
23	Excitotoxic motoneuron degeneration induced by glutamate receptor agonists and mitochondrial toxins in organotypic cultures of chick embryo spinal cord. Journal of Comparative Neurology, 2009, 516, 277-290.	0.9	21
24	Development of microglia in the chick embryo spinal cord: Implications in the regulation of motoneuronal survival and death. Journal of Neuroscience Research, 2009, 87, 2447-2466.	1.3	48
25	Caspase-independent type III programmed cell death in chronic lymphocytic leukemia: the key role of the F-actin cytoskeleton. Haematologica, 2009, 94, 507-517.	1.7	26
26	Strong P2X ₄ purinergic receptorâ€like immunoreactivity is selectively associated with degenerating neurons in transgenic rodent models of amyotrophic lateral sclerosis. Journal of Comparative Neurology, 2008, 506, 75-92.	0.9	65
27	The rescue of developing avian motoneurons from programmed cell death by a selective inhibitor of the fetal muscleâ€specific nicotinic acetylcholine receptor. Developmental Neurobiology, 2008, 68, 972-980.	1.5	15
28	7-Bromoindirubin-3â€2-oxime uncovers a serine protease-mediated paradigm of necrotic cell death. Biochemical Pharmacology, 2008, 76, 39-52.	2.0	22
29	Drp1 Mediates Caspase-Independent Type III Cell Death in Normal and Leukemic Cells. Molecular and Cellular Biology, 2007, 27, 7073-7088.	1.1	98
30	Survival and death of mature avian motoneurons in organotypic slice culture: Trophic requirements for survival and different types of degeneration. Journal of Comparative Neurology, 2007, 501, 669-690.	0.9	30
31	Excitotoxic motoneuron disease in chick embryo evolves with autophagic neurodegeneration and deregulation of neuromuscular innervation. Journal of Neuroscience Research, 2007, 85, 2726-2740.	1.3	15
32	Protein retention in the endoplasmic reticulum, blockade of programmed cell death and autophagy selectively occur in spinal cord motoneurons after glutamate receptor-mediated injury. Molecular and Cellular Neurosciences, 2005, 29, 283-298.	1.0	45
33	Rescue of developing spinal motoneurons from programmed cell death by the GABAA agonist muscimol acts by blockade of neuromuscular activity and increased intramuscular nerve branching. Molecular and Cellular Neurosciences, 2003, 22, 331-343.	1.0	31
34	c-Jun-like Immunoreactivity in Apoptosis Is the Result of a Crossreaction with Neoantigenic Sites Exposed by Caspase-3-mediated Proteolysis. Journal of Histochemistry and Cytochemistry, 2002, 50, 961-972.	1.3	11
35	In Vivo Analysis of Schwann Cell Programmed Cell Death in the Embryonic Chick: Regulation by Axons and Glial Growth Factor. Journal of Neuroscience, 2002, 22, 4509-4521.	1.7	36
36	Occurrence of glutamate receptor subunit 1-containing aggresome-like structures during normal development of rat spinal cord interneurons. Journal of Comparative Neurology, 2002, 442, 23-34.	0.9	17

JOSEP E ESQUERDA

#	Article	lF	CITATIONS
37	Long-Lasting Aberrant Tubulovesicular Membrane Inclusions Accumulate in Developing Motoneurons after a Sublethal Excitotoxic Insult: A Possible Model for Neuronal Pathology in Neurodegenerative Disease. Journal of Neuroscience, 2001, 21, 8072-8081.	1.7	25
38	Antibodies against c-Jun N-terminal peptide cross-react with neo-epitopes emerging after caspase-mediated proteolysis during apoptosis. Journal of Neurochemistry, 2001, 77, 904-915.	2.1	14
39	c-Jun regulation in rat neonatal motoneurons postaxotomy. Journal of Neuroscience Research, 2001, 63, 469-479.	1.3	21
40	Induction of reactive astrocytosis and prevention of motoneuron cell death by the I2 -imidazoline receptor ligand LSL 60101. British Journal of Pharmacology, 2000, 130, 1767-1776.	2.7	28
41	Opposing Effects of Excitatory Amino Acids on Chick Embryo Spinal Cord Motoneurons: Excitotoxic Degeneration or Prevention of Programmed Cell Death. Journal of Neuroscience, 1999, 19, 10803-10812.	1.7	43
42	Specific association of c-Jun-like immunoreactivity but not c-Jun p39 with normal and induced programmed cell death in the chick embryo. , 1999, 38, 171-190.		27
43	Nitric oxide synthase in rat neuromuscular junctions and in nerve terminals of Torpedo electric organ: its role as regulator of acetylcholine release. , 1998, 51, 90.		51
44	Effects of excitatory amino acids on neuromuscular development in the chick embryo. , 1997, 387, 73-95.		36
45	The carbohydrate N-acetylglucosamine is involved in the guidance of neurites from chick ciliary ganglion neurons through the extracellular matrix of rat skeletal muscle fiber. Neuroscience Letters, 1996, 207, 81-84.	1.0	6
46	Prevention by lamotrigine, MK-801 and Nï‰-nitro-l-arginine methyl ester of motoneuron cell death after neonatal axotomy. Neuroscience, 1996, 71, 313-325.	1.1	60
47	Intramuscular nerve sprouting induced by CNTF is associated with increases in CGRP content in mouse motor nerve terminals. Neuroscience Letters, 1996, 219, 60-64.	1.0	18
48	Schwann Cell Apoptosis during Normal Development and after Axonal Degeneration Induced by Neurotoxins in the Chick Embryo. Journal of Neuroscience, 1996, 16, 3979-3990.	1.7	75
49	Regulation of Motoneuronal Calcitonin Gene-related Peptide (CGRP) During Axonal Growth and Neuromuscular Synaptic Plasticity Induced by Botulinum Toxin in Rats. European Journal of Neuroscience, 1996, 8, 829-836.	1.2	63
50	S-laminin and N-acetylgalactosamine located at the synaptic basal lamina of skeletal muscle are involved in synaptic recognition by growing neurites. Journal of Neurocytology, 1995, 24, 903-915.	1.6	6
51	Evidence for calcium regulation of spinal cord motoneuron death in the chick embryo in vivo. Developmental Brain Research, 1995, 86, 167-179.	2.1	12
52	Calcitonin gene-related peptide in rat spinal cord motoneurons: Subcellular distribution and changes induced by axotomy. Neuroscience, 1992, 48, 449-461.	1.1	66
53	Treatment with digestive agents reveals several glycoconjugates specifically associated with rat neuromuscular junction. Histochemistry, 1992, 97, 125-131.	1.9	16
54	Absence of histochemical immunoreactivity to calcitonin gene-related peptide (CGRP) in spinal cord motoneurons from (+)-tubocurarine-treated chick embryos. Neuroscience Letters, 1989, 105, 1-6.	1.0	18

JOSEP E ESQUERDA

#	Article	IF	CITATIONS
55	Synaptic localization of a 66-kDa soluble protein from skeletal muscle: Evidence for its developmental and neural regulation. Experimental Neurology, 1989, 105, 211-218.	2.0	0
56	Phylogenetic polymorphism on lectin binding to junctional and non-junctional basal lamina at the vertebrate neuromuscular junction. Histochemistry, 1987, 87, 301-307.	1.9	12
57	Receptors to agglutinin fromDolichus biflorus (DBA) at the synaptic basal lamina of rat neuromuscular junction. Cell and Tissue Research, 1987, 248, 111-117.	1.5	14
58	Structural changes at pure cholinergic synaptosomes during the transmitter release induced by A-23187 inTorpedo marmorata. Cell and Tissue Research, 1987, 248, 207-214.	1.5	21
59	Binding of \hat{I}^2 -bungarotoxin toTorpedo electric organ synaptosomes. A high resolution autoradiographic study. Neuroscience, 1982, 7, 751-758.	1.1	16
60	Ionic dependence of adenosine uptake by isolated nerve endings from Torpedo electric organ. Neurochemistry International, 1982, 4, 513-521.	1.9	6