Cheng Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7857254/publications.pdf

Version: 2024-02-01

		1478505	1281871
15	545	6	11
papers	citations	h-index	g-index
2.5	1-		0.60
15	15	15	962
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Effects of embryo density on cell number of day 3 embryos cultured in a 30- $\hat{1}$ /4l drop: a retrospective cohort study. Zygote, 2022, , 1-8.	1.1	0
2	Embryo Density and Its Neutrality in Day-3 Embryo Development: A Retrospective Cohort Study. International Journal of Endocrinology, 2022, 2022, 1-11.	1.5	2
3	The Predictive Levels of Serum Anti-Mýllerian Hormone and the Combined Index of the Number of Retrieved Oocytes and Good-Quality Embryos in Advanced-Age Infertile Women. International Journal of Endocrinology, 2022, 2022, 1-8.	1.5	2
4	Human Acellular Amniotic Matrix with Previously Seeded Umbilical Cord Mesenchymal Stem Cells Restores Endometrial Function in a Rat Model of Injury. Mediators of Inflammation, 2021, 2021, 1-14.	3.0	15
5	Mitochondria-related changes and metabolic dysfunction in low prognosis patients under the POSEIDON classification. Human Reproduction, 2021, 36, 2904-2915.	0.9	13
6	Similar Repair Effects of Human Placenta, Bone Marrow Mesenchymal Stem Cells, and Their Exosomes for Damaged SVOG Ovarian Granulosa Cells. Stem Cells International, 2020, 2020, 1-17.	2.5	8
7	Diverse endometrial mRNA signatures during the window of implantation in patients with repeated implantation failure. Human Fertility, 2018, 21, 183-194.	1.7	29
8	Aberrantly expressed long noncoding RNAs in recurrent implantation failure: A microarray related study. Systems Biology in Reproductive Medicine, 2017, 63, 269-278.	2.1	25
9	Derivation of Pluripotent Stem Cells with InÂVivo Embryonic and Extraembryonic Potency. Cell, 2017, 169, 243-257.e25.	28.9	382
10	Endometrial MicroRNA Signature during the Window of Implantation Changed in Patients with Repeated Implantation Failure. Chinese Medical Journal, 2017, 130, 566-573.	2.3	61
11	Correlation between receptor-interacting protein 140 expression and directed differentiation of human embryonic stem cells into neural stem cells. Neural Regeneration Research, 2017, 12, 118.	3.0	4
12	Cytotoxic effects of mono-(2-ethylhexyl) phthalate on human embryonic stem cells. Chinese Medical Journal, 2013, 126, 1714-9.	2.3	4
13	Derivation and characterization of Chinese human embryonic stem cell line with high potential to differentiate into pancreatic and hepatic cells. Chinese Medical Journal, 2011, 124, 1037-43.	2.3	0
14	The Pilot Study of Phthalates and Monoesters in Human Chorion Tissues. International Conference on Bioinformatics and Biomedical Engineering: [proceedings] International Conference on Bioinformatics and Biomedical Engineering, 2010, , .	0.0	0
15	The Effect of Mono-(2-Ethylhexyl) Phthalate on Human Granulosa Cells. International Conference on Bioinformatics and Biomedical Engineering: [proceedings] International Conference on Bioinformatics and Biomedical Engineering, 2010, , .	0.0	0