Giuseppe Izzo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7857217/publications.pdf

Version: 2024-02-01

32	397	14	20
papers	citations	h-index	g-index
32	32	32	178
all docs	docs citations	times ranked	citing authors

#	ARTICLE	IF	CITATIONS
1	Construction of <mmi:math altimg="si22.svg" xmins:mmi="http://www.w3.org/1998/Math/MathML"><mml:mi>G</mml:mi>- or <mml:math altimg="si23.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>G</mml:mi>G<<mml:mo>(</mml:mo><mml:mi>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</mml:mi></mml:math></mmi:math>	2.2 /mml:mo>	1 ow
2	Construction of SDIRK methods with dispersive stability functions. Applied Numerical Mathematics, 2021, 160, 265-280.	2.1	2
3	Preface to Focused Section on Efficient High-Order Time Discretization Methods for Partial Differential Equations. Communications on Applied Mathematics and Computation, 2021, 3, 605-605.	1.7	O
4	A new class of strong stability preserving general linear methods. Journal of Computational and Applied Mathematics, 2021, 396, 113612.	2.0	1
5	Strong Stability Preserving IMEX Methods for Partitioned Systems of Differential Equations. Communications on Applied Mathematics and Computation, 2021, 3, 719-758.	1.7	1
6	Strong stability preserving implicit–explicit transformed general linear methods. Mathematics and Computers in Simulation, 2020, 176, 206-225.	4.4	5
7	Transformed implicit-explicit DIMSIMs with strong stability preserving explicit part. Numerical Algorithms, 2019, 81, 1343-1359.	1.9	8
8	Strong Stability Preserving General Linear Methods with Runge–Kutta Stability. Journal of Scientific Computing, 2018, 76, 943-968.	2.3	19
9	Strong stability preserving transformed DIMSIMs. Journal of Computational and Applied Mathematics, 2018, 343, 174-188.	2.0	14
10	Stability of Numerical Solutions for Abelâ \in "Volterra Integral Equations of the Second Kind. Mediterranean Journal of Mathematics, 2018, 15, 1.	0.8	3
11	Generalized linear multistep methods for ordinary differential equations. Applied Numerical Mathematics, 2017, 114, 165-178.	2.1	6
12	Starting procedures for general linear methods. Applied Numerical Mathematics, 2017, 120, 165-175.	2.1	14
13	Accurate Implicit–Explicit General Linear Methods with Inherent Runge–Kutta Stability. Journal of Scientific Computing, 2017, 70, 1105-1143.	2.3	22
14	Highly stable implicit–explicit Runge–Kutta methods. Applied Numerical Mathematics, 2017, 113, 71-92.	2.1	41
15	Construction of IMEX methods with inherent Runge-Kutta stability. AIP Conference Proceedings, 2016,	0.4	0
16	Strong Stability Preserving General Linear Methods. Journal of Scientific Computing, 2015, 65, 271-298.	2.3	25
17	STRONG STABILITY PRESERVING MULTISTAGE INTEGRATION METHODS. Mathematical Modelling and Analysis, 2015, 20, 552-577.	1.5	15
18	Construction of strong stability preserving general linear methods. AIP Conference Proceedings, 2015, , .	0.4	1

#	Article	IF	Citations
19	Natural Volterra Runge-Kutta methods. Numerical Algorithms, 2014, 65, 421-445.	1.9	18
20	Construction of algebraically stable DIMSIMs. Journal of Computational and Applied Mathematics, 2014, 261, 72-84.	2.0	8
21	Search for highly stable two-step Runge–Kutta methods. Applied Numerical Mathematics, 2012, 62, 1361-1379.	2.1	19
22	Global dynamics of difference equations for SIR epidemic models with a class of nonlinear incidence rates. Journal of Difference Equations and Applications, 2012, 18, 1163-1181.	1.1	49
23	Perturbed MEBDF methods. Computers and Mathematics With Applications, 2012, 63, 851-861.	2.7	8
24	Highly stable Runge–Kutta methods for Volterra integral equations. Applied Numerical Mathematics, 2012, 62, 1002-1013.	2.1	13
25	Permanence and global stability of a class of discrete epidemic models. Nonlinear Analysis: Real World Applications, 2011, 12, 2105-2117.	1.7	24
26	General linear methods for Volterra integral equations. Journal of Computational and Applied Mathematics, 2010, 234, 2768-2782.	2.0	16
27	A General Discrete Time Model of Population Dynamics in the Presence of an Infection. Discrete Dynamics in Nature and Society, 2009, 2009, 1-15.	0.9	18
28	Highly Stable General Linear Methods for Differential Systems. , 2009, , .		3
29	A discrete time version for models of population dynamics in the presence of an infection. Journal of Computational and Applied Mathematics, 2007, 210, 210-221.	2.0	33
30	Simulating the effect of vaccine-induced immune responses on HIV infection. Human Immunology, 2003, 64, 840-851.	2.4	2
31	Global error estimation for explicit general linear methods. Numerical Algorithms, 0, , 1.	1.9	5
32	Global error estimation for explicit second derivative general linear methods. Numerical Algorithms, 0, , 1.	1.9	3