Patricia R M Rocco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7857149/publications.pdf Version: 2024-02-01

		31902	64668
439	12,318	53	79
papers	citations	h-index	g-index
452	452	452	12679
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Intraoperative Protective Mechanical Ventilation for Prevention of Postoperative Pulmonary Complications. Anesthesiology, 2015, 123, 692-713.	1.3	319
2	Multiple organ dysfunction in SARS-CoV-2: MODS-CoV-2. Expert Review of Respiratory Medicine, 2020, 14, 865-868.	1.0	196
3	Current status of cell-based therapies for respiratory virus infections: applicability to COVID-19. European Respiratory Journal, 2020, 55, 2000858.	3.1	193
4	Systemic Administration of Human Bone Marrow-Derived Mesenchymal Stromal Cell Extracellular Vesicles Ameliorates <i>Aspergillus</i> Hyphal Extract-Induced Allergic Airway Inflammation in Immunocompetent Mice. Stem Cells Translational Medicine, 2015, 4, 1302-1316.	1.6	191
5	Lung Tissue Mechanics and Extracellular Matrix Remodeling in Acute Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2001, 164, 1067-1071.	2.5	155
6	Pulmonary and extrapulmonary acute lung injury: inflammatory and ultrastructural analyses. Journal of Applied Physiology, 2005, 98, 1777-1783.	1.2	149
7	Effects of different mesenchymal stromal cell sources and delivery routes in experimental emphysema. Respiratory Research, 2014, 15, 118.	1.4	141
8	Static and Dynamic Contributors to Ventilator-induced Lung Injury in Clinical Practice. Pressure, Energy, and Power. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 767-774.	2.5	135
9	Distinct phenotypes require distinct respiratory management strategies in severe COVID-19. Respiratory Physiology and Neurobiology, 2020, 279, 103455.	0.7	129
10	Anti-inflammatory properties of anesthetic agents. Critical Care, 2017, 21, 67.	2.5	119
11	Early use of nitazoxanide in mild COVID-19 disease: randomised, placebo-controlled trial. European Respiratory Journal, 2021, 58, 2003725.	3.1	117
12	Pathogenesis of Multiple Organ Injury in COVID-19 and Potential Therapeutic Strategies. Frontiers in Physiology, 2021, 12, 593223.	1.3	113
13	Human adipose tissue mesenchymal stromal cells and their extracellular vesicles act differentially on lung mechanics and inflammation in experimental allergic asthma. Stem Cell Research and Therapy, 2017, 8, 151.	2.4	110
14	FAS Ligand Triggers Pulmonary Silicosis. Journal of Experimental Medicine, 2001, 194, 155-164.	4.2	106
15	The potential of mesenchymal stem cell therapy for chronic lung disease. Expert Review of Respiratory Medicine, 2020, 14, 31-39.	1.0	106
16	Effects of mechanical ventilation on the extracellular matrix. Intensive Care Medicine, 2008, 34, 631-639.	3.9	100
17	Extracellular vesicles derived from mesenchymal stromal cells: a therapeutic option in respiratory diseases?. Stem Cell Research and Therapy, 2016, 7, 53.	2.4	98
18	Immunomodulation after ischemic stroke: potential mechanisms and implications for therapy. Critical Care, 2016, 20, 391.	2.5	97

#	Article	IF	CITATIONS
19	Personalized mechanical ventilation in acute respiratory distress syndrome. Critical Care, 2021, 25, 250.	2.5	97
20	Recruitment maneuver in pulmonary and extrapulmonary experimental acute lung injury. Critical Care Medicine, 2008, 36, 1900-1908.	0.4	96
21	Strategies to improve the therapeutic effects of mesenchymal stromal cells in respiratory diseases. Stem Cell Research and Therapy, 2018, 9, 45.	2.4	95
22	Effect of Corticosteroid on Lung Parenchyma Remodeling at an Early Phase of Acute Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2003, 168, 677-684.	2.5	94
23	Time course of lung parenchyma remodeling in pulmonary and extrapulmonary acute lung injury. Journal of Applied Physiology, 2006, 100, 98-106.	1.2	92
24	Bench-to-bedside review: the role of glycosaminoglycans in respiratory disease. Critical Care, 2006, 10, 237.	2.5	89
25	Lung Parenchyma Remodeling in a Murine Model of Chronic Allergic Inflammation. American Journal of Respiratory and Critical Care Medicine, 2005, 171, 829-837.	2.5	88
26	Comparative Effects of Volutrauma and Atelectrauma on Lung Inflammation in Experimental Acute Respiratory Distress Syndrome. Critical Care Medicine, 2016, 44, e854-e865.	0.4	87
27	Positive end-expiratory pressure prevents lung mechanical stress caused by recruitment/derecruitment. Journal of Applied Physiology, 2005, 98, 53-61.	1.2	84
28	Cannabidiol reduces airway inflammation and fibrosis in experimental allergic asthma. European Journal of Pharmacology, 2019, 843, 251-259.	1.7	84
29	<scp>A</scp> ngiotensinâ€(1â€7) attenuates airway remodelling and hyperresponsiveness in a model of chronic allergic lung inflammation. British Journal of Pharmacology, 2015, 172, 2330-2342.	2.7	81
30	Current understanding of the immunosuppressive properties of mesenchymal stromal cells. Journal of Molecular Medicine, 2019, 97, 605-618.	1.7	81
31	Pros and cons of corticosteroid therapy for COVID-19 patients. Respiratory Physiology and Neurobiology, 2020, 280, 103492.	0.7	80
32	Elastase-induced pulmonary emphysema: insights from experimental models. Anais Da Academia Brasileira De Ciencias, 2011, 83, 1385-1396.	0.3	79
33	Brain–heart interaction after acute ischemic stroke. Critical Care, 2020, 24, 163.	2.5	77
34	Power to mechanical power to minimize ventilator-induced lung injury?. Intensive Care Medicine Experimental, 2019, 7, 38.	0.9	75
35	Bone Marrow, Adipose, and Lung Tissue-Derived Murine Mesenchymal Stromal Cells Release Different Mediators and Differentially Affect Airway and Lung Parenchyma in Experimental Asthma. Stem Cells Translational Medicine, 2017, 6, 1557-1567.	1.6	74
36	Mesenchymal Stem Cell Trials for Pulmonary Diseases. Journal of Cellular Biochemistry, 2014, 115, 1023-1032.	1.2	73

#	Article	IF	CITATIONS
37	Pulmonary and extrapulmonary acute respiratory distress syndrome: are they different?. Current Opinion in Critical Care, 2005, 11, 10-17.	1.6	71
38	Freshly Thawed and Continuously Cultured Human Bone Marrow-Derived Mesenchymal Stromal Cells Comparably Ameliorate Allergic Airways Inflammation in Immunocompetent Mice. Stem Cells Translational Medicine, 2015, 4, 615-624.	1.6	71
39	Laboratory Biomarkers for Diagnosis and Prognosis in COVID-19. Frontiers in Immunology, 2022, 13, 857573.	2.2	70
40	Methylprednisolone improves lung mechanics and reduces the inflammatory response in pulmonary but not in extrapulmonary mild acute lung injury in mice*. Critical Care Medicine, 2008, 36, 2621-2628.	0.4	69
41	Combined Bone Marrow-Derived Mesenchymal Stromal Cell Therapy and One-Way Endobronchial Valve Placement in Patients with Pulmonary Emphysema: A Phase I Clinical Trial. Stem Cells Translational Medicine, 2017, 6, 962-969.	1.6	68
42	Close down the lungs and keep them resting to minimize ventilator-induced lung injury. Critical Care, 2018, 22, 72.	2.5	67
43	Pulmonary and extrapulmonary acute respiratory distress syndrome: myth or reality?. Current Opinion in Critical Care, 2008, 14, 50-55.	1.6	65
44	Apoptosis Underlies Immunopathogenic Mechanisms in Acute Silicosis. American Journal of Respiratory Cell and Molecular Biology, 2002, 27, 78-84.	1.4	64
45	Noninvasive respiratory support and patient self-inflicted lung injury in COVID-19: a narrative review. British Journal of Anaesthesia, 2021, 127, 353-364.	1.5	64
46	Gut Microbiota in Acute Ischemic Stroke: From Pathophysiology to Therapeutic Implications. Frontiers in Neurology, 2020, 11, 598.	1.1	62
47	Mechanisms of cellular therapy in respiratory diseases. Intensive Care Medicine, 2011, 37, 1421-1431.	3.9	61
48	Bone marrow-derived mononuclear cell therapy in experimental pulmonary and extrapulmonary acute lung injury. Critical Care Medicine, 2010, 38, 1733-1741.	0.4	60
49	Biological Impact of Transpulmonary Driving Pressure in Experimental Acute Respiratory Distress Syndrome. Anesthesiology, 2015, 123, 423-433.	1.3	60
50	The lung and the brain: a dangerous cross-talk. Critical Care, 2011, 15, 168.	2.5	59
51	Mesenchymal Stem Cells From Bone Marrow, Adipose Tissue, and Lung Tissue Differentially Mitigate Lung and Distal Organ Damage in Experimental Acute Respiratory Distress Syndrome*. Critical Care Medicine, 2018, 46, e132-e140.	0.4	59
52	Computed tomography assessment of PEEP-induced alveolar recruitment in patients with severe COVID-19 pneumonia. Critical Care, 2021, 25, 81.	2.5	59
53	Effects of Mesenchymal Stem Cell Therapy on the Time Course of Pulmonary Remodeling Depend on the Etiology of Lung Injury in Mice. Critical Care Medicine, 2013, 41, e319-e333.	0.4	58
54	Dasatinib Reduces Lung Inflammation and Fibrosis in Acute Experimental Silicosis. PLoS ONE, 2016, 11, e0147005.	1.1	58

#	Article	IF	CITATIONS
55	Mechanical ventilation in patients with acute ischaemic stroke: from pathophysiology to clinical practice. Critical Care, 2019, 23, 388.	2.5	57
56	Glucocorticoid Treatment in Acute Lung Injury and AcuteÂRespiratory Distress Syndrome. Critical Care Clinics, 2011, 27, 589-607.	1.0	56
57	Current understanding of the therapeutic benefits of mesenchymal stem cells in acute respiratory distress syndrome. Cell Biology and Toxicology, 2020, 36, 83-102.	2.4	56
58	Effects of microcystin-LR on mouse lungs. Toxicon, 2007, 50, 330-338.	0.8	55
59	DJ-1/PARK7 Impairs Bacterial Clearance in Sepsis. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 889-905.	2.5	55
60	Lung parenchyma remodeling in acute respiratory distress syndrome. Minerva Anestesiologica, 2009, 75, 730-40.	0.6	55
61	Lung tissue mechanics and extracellular matrix composition in a murine model of silicosis. Journal of Applied Physiology, 2001, 90, 1400-1406.	1.2	54
62	New perspectives in nanotherapeutics for chronic respiratory diseases. Biophysical Reviews, 2017, 9, 793-803.	1.5	54
63	The extracellular matrix of the lung and its role in edema formation. Anais Da Academia Brasileira De Ciencias, 2007, 79, 285-297.	0.3	52
64	Pathophysiology of ventilator-associated lung injury. Current Opinion in Anaesthesiology, 2012, 25, 123-130.	0.9	52
65	Bosutinib Therapy Ameliorates Lung Inflammation and Fibrosis in Experimental Silicosis. Frontiers in Physiology, 2017, 8, 159.	1.3	52
66	Mesenchymal stromal cell therapy reduces lung inflammation and vascular remodeling and improves hemodynamics in experimental pulmonary arterial hypertension. Stem Cell Research and Therapy, 2017, 8, 220.	2.4	52
67	Focal ischemic stroke leads to lung injury and reduces alveolar macrophage phagocytic capability in rats. Critical Care, 2018, 22, 249.	2.5	52
68	Emerging pharmacological therapies for ARDS: COVID-19 and beyond. Intensive Care Medicine, 2020, 46, 2265-2283.	3.9	52
69	Chest wall mechanics and abdominal pressure during general anaesthesia in normal and obese individuals and in acute lung injury. Current Opinion in Critical Care, 2011, 17, 72-79.	1.6	51
70	Bone marrow-derived mononuclear cell therapy attenuates silica-induced lung fibrosis. European Respiratory Journal, 2011, 37, 1217-1225.	3.1	51
71	DNA nanoparticle-mediated thymulin gene therapy prevents airway remodeling in experimental allergic asthma. Journal of Controlled Release, 2014, 180, 125-133.	4.8	51
72	Biologic Impact of Mechanical Power at High and Low Tidal Volumes in Experimental Mild Acute Respiratory Distress Syndrome. Anesthesiology, 2018, 128, 1193-1206.	1.3	51

#	Article	IF	CITATIONS
73	Mesenchymal Stromal Cell-Derived Extracellular Vesicles in Lung Diseases: Current Status and Perspectives. Frontiers in Cell and Developmental Biology, 2021, 9, 600711.	1.8	51
74	Therapeutic potential of a new phosphodiesterase inhibitor in acute lung injury. European Respiratory Journal, 2003, 22, 20-27.	3.1	50
75	Intravenous glutamine decreases lung and distal organ injury in an experimental model of abdominal sepsis. Critical Care, 2009, 13, R74.	2.5	50
76	Recruitment Maneuvers Modulate Epithelial and Endothelial Cell Response According to Acute Lung Injury Etiology*. Critical Care Medicine, 2013, 41, e256-e265.	0.4	50
77	Bone Marrow–Derived Mononuclear Cell Therapy Accelerates Renal Ischemia-Reperfusion Injury Recovery by Modulating Inflammatory, Antioxidant and Apoptotic Related Molecules. Cellular Physiology and Biochemistry, 2017, 41, 1736-1752.	1.1	50
78	Effects of frequency and inspiratory plateau pressure during recruitment manoeuvres on lung and distal organs in acute lung injury. Intensive Care Medicine, 2009, 35, 1120-1128.	3.9	47
79	Recruitment maneuver in experimental acute lung injury: The role of alveolar collapse and edema. Critical Care Medicine, 2010, 38, 2207-2214.	0.4	47
80	Assisted ventilation modes reduce the expression of lung inflammatory and fibrogenic mediators in a model of mild acute lung injury. Intensive Care Medicine, 2010, 36, 1417-1426.	3.9	47
81	Mesenchymal Stromal Cells Are More Effective Than Their Extracellular Vesicles at Reducing Lung Injury Regardless of Acute Respiratory Distress Syndrome Etiology. Stem Cells International, 2019, 2019, 1-15.	1.2	47
82	Protective effects of bone marrow mononuclear cell therapy on lung and heart in an elastase-induced emphysema model. Respiratory Physiology and Neurobiology, 2012, 182, 26-36.	0.7	46
83	Bone marrow-derived mononuclear cells vs. mesenchymal stromal cells in experimental allergic asthma. Respiratory Physiology and Neurobiology, 2013, 187, 190-198.	0.7	46
84	Neurological Manifestations of Severe SARS-CoV-2 Infection: Potential Mechanisms and Implications of Individualized Mechanical Ventilation Settings. Frontiers in Neurology, 2020, 11, 845.	1.1	46
85	Mechanisms of ventilator-induced lung injury in healthy lungs. Bailliere's Best Practice and Research in Clinical Anaesthesiology, 2015, 29, 301-313.	1.7	45
86	Early effects of ventilatory rescue therapies on systemic and cerebral oxygenation in mechanically ventilated COVID-19 patients with acute respiratory distress syndrome: a prospective observational study. Critical Care, 2021, 25, 111.	2.5	45
87	Understanding the mechanisms of lung mechanical stress. Brazilian Journal of Medical and Biological Research, 2006, 39, 697-706.	0.7	44
88	Pulmonary lesion induced by low and high positive end-expiratory pressure levels during protective ventilation in experimental acute lung injury. Critical Care Medicine, 2009, 37, 1011-1017.	0.4	44
89	New and conventional strategies for lung recruitment in acute respiratory distress syndrome. Critical Care, 2010, 14, 210.	2.5	44
90	Recruitment maneuvers in acute respiratory distress syndrome: The safe way is the best way. World Journal of Critical Care Medicine, 2015, 4, 278.	0.8	44

#	Article	IF	CITATIONS
91	Magnetic targeting as a strategy to enhance therapeutic effects of mesenchymal stromal cells. Stem Cell Research and Therapy, 2017, 8, 58.	2.4	44
92	Therapeutic effects of adipose-tissue-derived mesenchymal stromal cells and their extracellular vesicles in experimental silicosis. Respiratory Research, 2018, 19, 104.	1.4	44
93	Lung Mechanics and Histology During Sevoflurane Anesthesia in a Model of Chronic Allergic Asthma. Anesthesia and Analgesia, 2007, 104, 631-637.	1.1	43
94	Chest physiotherapy: An important adjuvant in critically ill mechanically ventilated patients with COVID-19. Respiratory Physiology and Neurobiology, 2020, 282, 103529.	0.7	43
95	Hypervolemia induces and potentiates lung damage after recruitment maneuver in a model of sepsis-induced acute lung injury. Critical Care, 2010, 14, R114.	2.5	41
96	Ventilator-induced lung injury during controlled ventilation in patients with acute respiratory distress syndrome: less is probably better. Expert Review of Respiratory Medicine, 2018, 12, 403-414.	1.0	41
97	Effects of chronic <scp>l</scp> -NAME treatment lung tissue mechanics, eosinophilic and extracellular matrix responses induced by chronic pulmonary inflammation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 294, L1197-L1205.	1.3	40
98	Understanding the mechanisms of glutamine action in critically ill patients. Anais Da Academia Brasileira De Ciencias, 2010, 82, 417-430.	0.3	40
99	Sex-specific lung remodeling and inflammation changes in experimental allergic asthma. Journal of Applied Physiology, 2010, 109, 855-863.	1.2	40
100	Impact of pressure profile and duration of recruitment maneuvers on morphofunctional and biochemical variables in experimental lung injury*. Critical Care Medicine, 2011, 39, 1074-1081.	0.4	40
101	Year in review in Intensive Care Medicine 2011. II. Cardiovascular, infections, pneumonia and sepsis, critical care organization and outcome, education, ultrasonography, metabolism and coagulation. Intensive Care Medicine, 2012, 38, 345-358.	3.9	40
102	The tyrosine kinase inhibitor dasatinib reduces lung inflammation and remodelling in experimental allergic asthma. British Journal of Pharmacology, 2016, 173, 1236-1247.	2.7	40
103	Mesenchymal stromal cell therapy in COPD: from bench to bedside. International Journal of COPD, 2017, Volume 12, 3017-3027.	0.9	40
104	Serum from Asthmatic Mice Potentiates the Therapeutic Effects of Mesenchymal Stromal Cells in Experimental Allergic Asthma. Stem Cells Translational Medicine, 2019, 8, 301-312.	1.6	40
105	Stem-cell extracellular vesicles and lung repair. Stem Cell Investigation, 2017, 4, 78-78.	1.3	39
106	The basics of respiratory mechanics: ventilator-derived parameters. Annals of Translational Medicine, 2018, 6, 376-376.	0.7	39
107	Lung distribution of gas and blood volume in critically ill COVID-19 patients: a quantitative dual-energy computed tomography study. Critical Care, 2021, 25, 214.	2.5	39
108	Regular and moderate exercise before experimental sepsis reduces the risk of lung and distal organ injury. Journal of Applied Physiology, 2012, 112, 1206-1214.	1.2	38

#	Article	IF	CITATIONS
109	Comparison of different degrees of variability in tidal volume to prevent deterioration of respiratory system elastance in experimental acute lung inflammation. British Journal of Anaesthesia, 2016, 116, 708-715.	1.5	38
110	What increases type III procollagen mRNA levels in lung tissue: stress induced by changes in force or amplitude?. Respiratory Physiology and Neurobiology, 2004, 144, 59-70.	0.7	37
111	Pros and cons of recruitment maneuvers in acute lung injury and acute respiratory distress syndrome. Expert Review of Respiratory Medicine, 2010, 4, 479-489.	1.0	37
112	IL-13 Immunotoxin Accelerates Resolution of Lung Pathological Changes Triggered by Silica Particles in Mice. Journal of Immunology, 2013, 191, 5220-5229.	0.4	37
113	Effects of Rho-kinase inhibition in lung tissue with chronic inflammation. Respiratory Physiology and Neurobiology, 2014, 192, 134-146.	0.7	37
114	ATF3 Protects Pulmonary Resident Cells from Acute and Ventilator-Induced Lung Injury by Preventing Nrf2 Degradation. Antioxidants and Redox Signaling, 2015, 22, 651-668.	2.5	37
115	Protective function of DJ-1/PARK7 in lipopolysaccharide and ventilator-induced acute lung injury. Redox Biology, 2021, 38, 101796.	3.9	37
116	Use of computed tomography scanning to guide lung recruitment and adjust positive-end expiratory pressure. Current Opinion in Critical Care, 2011, 17, 268-274.	1.6	36
117	Repeated Administration of Bone Marrow-Derived Cells Prevents Disease Progression in Experimental Silicosis. Cellular Physiology and Biochemistry, 2013, 32, 1681-1694.	1.1	36
118	Characterization of a Mouse Model of Emphysema Induced by Multiple Instillations of Low-Dose Elastase. Frontiers in Physiology, 2016, 7, 457.	1.3	36
119	Impact of Different Tidal Volume Levels at Low Mechanical Power on Ventilator-Induced Lung Injury in Rats. Frontiers in Physiology, 2018, 9, 318.	1.3	36
120	Eicosapentaenoic Acid Enhances the Effects of Mesenchymal Stromal Cell Therapy in Experimental Allergic Asthma. Frontiers in Immunology, 2018, 9, 1147.	2.2	36
121	Lung inflammatory environments differentially alter mesenchymal stromal cell behavior. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 317, L823-L831.	1.3	36
122	Neurological Complications and Noninvasive Multimodal Neuromonitoring in Critically Ill Mechanically Ventilated COVID-19 Patients. Frontiers in Neurology, 2020, 11, 602114.	1.1	36
123	Mesenchymal stromal (stem) cell therapy modulates miR-193b-5p expression to attenuate sepsis-induced acute lung injury. European Respiratory Journal, 2022, 59, 2004216.	3.1	36
124	Airway closure: the silent killer of peripheral airways. Critical Care, 2007, 11, 114.	2.5	35
125	Nanoparticle-based therapy for respiratory diseases. Anais Da Academia Brasileira De Ciencias, 2013, 85, 137-146.	0.3	35
126	Ventilator-Associated Lung Injury during Assisted Mechanical Ventilation. Seminars in Respiratory and Critical Care Medicine, 2014, 35, 409-417.	0.8	35

8

#	Article	IF	CITATIONS
127	Cell-based therapies for coronavirus disease 2019: proper clinical investigations are essential. Cytotherapy, 2020, 22, 602-605.	0.3	35
128	Comparison of rat and mouse pulmonary tissue mechanical properties and histology. Journal of Applied Physiology, 2002, 92, 230-234.	1.2	34
129	Pulmonary morphofunctional effects of mechanical ventilation with high inspiratory air flow. Critical Care Medicine, 2008, 36, 232-239.	0.4	34
130	Prolonged recruitment manoeuvre improves lung function with less ultrastructural damage in experimental mild acute lung injury. Respiratory Physiology and Neurobiology, 2009, 169, 271-281.	0.7	34
131	Pulmonary Antifibrotic Mechanisms Aspirin-Triggered Lipoxin A ₄ Synthetic Analog. American Journal of Respiratory Cell and Molecular Biology, 2013, 49, 1029-1037.	1.4	34
132	Higher Levels of Spontaneous Breathing Reduce Lung Injury in Experimental Moderate Acute Respiratory Distress Syndrome*. Critical Care Medicine, 2014, 42, e702-e715.	0.4	34
133	Exogenous Glutamine in Respiratory Diseases: Myth or Reality?. Nutrients, 2016, 8, 76.	1.7	34
134	Lung Functional and Biologic Responses to Variable Ventilation in Experimental Pulmonary and Extrapulmonary Acute Respiratory Distress Syndrome. Critical Care Medicine, 2016, 44, e553-e562.	0.4	34
135	Therapeutic administration of bone marrowâ€derived mesenchymal stromal cells reduces airway inflammation without upâ€regulating Tregs in experimental asthma. Clinical and Experimental Allergy, 2018, 48, 205-216.	1.4	34
136	Multiple doses of adipose tissue-derived mesenchymal stromal cells induce immunosuppression in experimental asthma. Stem Cells Translational Medicine, 2020, 9, 250-260.	1.6	34
137	Personalized pharmacological therapy for ARDS: a light at the end of the tunnel. Expert Opinion on Investigational Drugs, 2020, 29, 49-61.	1.9	34
138	Infectious disease-associated encephalopathies. Critical Care, 2021, 25, 236.	2.5	34
139	Bone Marrow Mononuclear Cell Therapy Led to Alveolar-Capillary Membrane Repair, Improving Lung Mechanics in Endotoxin-Induced Acute Lung Injury. Cell Transplantation, 2010, 19, 965-971.	1.2	33
140	Y-27632 is associated with corticosteroid-potentiated control of pulmonary remodeling and inflammation in guinea pigs with chronic allergic inflammation. BMC Pulmonary Medicine, 2015, 15, 85.	0.8	33
141	Eicosapentaenoic acid potentiates the therapeutic effects of adipose tissue-derived mesenchymal stromal cells on lung and distal organ injury in experimental sepsis. Stem Cell Research and Therapy, 2019, 10, 264.	2.4	33
142	Effects of higher PEEP and recruitment manoeuvres on mortality in patients with ARDS: a systematic review, meta-analysis, meta-regression and trial sequential analysis of randomized controlled trials. Intensive Care Medicine Experimental, 2020, 8, 39.	0.9	33
143	Effects of undernutrition on respiratory mechanics and lung parenchyma remodeling. Journal of Applied Physiology, 2004, 97, 1888-1896.	1.2	32
144	Corticosteroids in acute respiratory distress syndrome. Brazilian Journal of Medical and Biological Research, 2005, 38, 147-159.	0.7	32

#	Article	IF	CITATIONS
145	Intratracheal instillation of bone marrow-derived cell in an experimental model of silicosis. Respiratory Physiology and Neurobiology, 2009, 169, 227-233.	0.7	32
146	Elastase-Induced Lung Emphysema Models in Mice. Methods in Molecular Biology, 2017, 1639, 67-75.	0.4	32
147	Coagulative Disorders in Critically Ill COVID-19 Patients with Acute Distress Respiratory Syndrome: A Critical Review. Journal of Clinical Medicine, 2021, 10, 140.	1.0	32
148	Effects of Intravascular Volume Replacement on Lung and Kidney Function and Damage in Nonseptic Experimental Lung Injury. Anesthesiology, 2013, 118, 395-408.	1.3	31
149	Cell-based therapies for the acute respiratory distress syndrome. Current Opinion in Critical Care, 2014, 20, 122-131.	1.6	31
150	Effects of Obesity on Pulmonary Inflammation and Remodeling in Experimental Moderate Acute Lung Injury. Frontiers in Immunology, 2019, 10, 1215.	2.2	31
151	Nanoparticle-based thymulin gene therapy therapeutically reverses key pathology of experimental allergic asthma. Science Advances, 2020, 6, eaay7973.	4.7	31
152	Effects of bone marrow-derived mononuclear cells on airway and lung parenchyma remodeling in a murine model of chronic allergic inflammation. Respiratory Physiology and Neurobiology, 2011, 175, 153-163.	0.7	30
153	Modulation of Stress versus Time Product during Mechanical Ventilation Influences Inflammation as Well as Alveolar Epithelial and Endothelial Response in Rats. Anesthesiology, 2015, 122, 106-116.	1.3	30
154	Prospects and progress in cell therapy for acute respiratory distress syndrome. Expert Opinion on Biological Therapy, 2016, 16, 1353-1360.	1.4	30
155	The Effects of Short-Term Propofol and Dexmedetomidine on Lung Mechanics, Histology, and Biological Markers in Experimental Obesity. Anesthesia and Analgesia, 2016, 122, 1015-1023.	1.1	30
156	Biological Response to Time-Controlled Adaptive Ventilation Depends on Acute Respiratory Distress Syndrome Etiology*. Critical Care Medicine, 2018, 46, e609-e617.	0.4	30
157	Prone position prevents regional alveolar hyperinflation and mechanical stress and strain in mild experimental acute lung injury. Respiratory Physiology and Neurobiology, 2009, 167, 181-188.	0.7	29
158	Pivotal Role of the 5-Lipoxygenase Pathway in Lung Injury after Experimental Sepsis. American Journal of Respiratory Cell and Molecular Biology, 2014, 50, 87-95.	1.4	29
159	Possible mechanisms of Pseudomonas aeruginosa-associated lung disease. International Journal of Medical Microbiology, 2016, 306, 20-28.	1.5	29
160	Emerging trends in COVID-19 treatment: learning from inflammatory conditions associated with cellular therapies. Cytotherapy, 2020, 22, 474-481.	0.3	29
161	Effects of halothane on respiratory mechanics and lung histopathology in normal rats. British Journal of Anaesthesia, 2000, 84, 372-377.	1.5	28
162	Bone marrow mononuclear cell therapy in experimental allergic asthma: Intratracheal versus intravenous administration. Respiratory Physiology and Neurobiology, 2013, 185, 615-624.	0.7	28

#	Article	IF	CITATIONS
163	Effects of sigh during pressure control and pressure support ventilation in pulmonary and extrapulmonary mild acute lung injury. Critical Care, 2014, 18, 474.	2.5	28
164	Pilot safety study of intrabronchial instillation of bone marrow-derived mononuclear cells in patients with silicosis. BMC Pulmonary Medicine, 2015, 15, 66.	0.8	28
165	Effects of Positive End-Expiratory Pressure and Spontaneous Breathing Activity on Regional Lung Inflammation in Experimental Acute Respiratory Distress Syndrome. Critical Care Medicine, 2019, 47, e358-e365.	0.4	28
166	Pulmonary mechanics and lung histology in acute lung injury induced by Bothrops jararaca venom. Respiratory Physiology and Neurobiology, 2004, 139, 167-177.	0.7	27
167	Different strains of mice present distinct lung tissue mechanics and extracellular matrix composition in a model of chronic allergic asthma. Respiratory Physiology and Neurobiology, 2009, 165, 202-207.	0.7	27
168	CD11b+ and Sca-1+ Cells Exert the Main Beneficial Effects of Systemically Administered Bone Marrow-Derived Mononuclear Cells in a Murine Model of Mixed Th2/Th17 Allergic Airway Inflammation. Stem Cells Translational Medicine, 2016, 5, 488-499.	1.6	27
169	Mesenchymal Stromal Cells Protect the Blood-Brain Barrier, Reduce Astrogliosis, and Prevent Cognitive and Behavioral Alterations in Surviving Septic Mice. Critical Care Medicine, 2020, 48, e290-e298.	0.4	27
170	Respiratory mechanics and lung histology in normal rats anesthetized with sevoflurane. Journal of Applied Physiology, 2001, 91, 803-810.	1.2	26
171	Effects of propofol on respiratory mechanic and lung histology in normal rats. British Journal of Anaesthesia, 2004, 92, 737-740.	1.5	26
172	Impact of obesity on airway and lung parenchyma remodeling in experimental chronic allergic asthma. Respiratory Physiology and Neurobiology, 2011, 177, 141-148.	0.7	26
173	The effects of salbutamol on epithelial ion channels depend on the etiology of acute respiratory distress syndrome but not the route of administration. Respiratory Research, 2014, 15, 56.	1.4	26
174	The Effects of Dasatinib in Experimental Acute Respiratory Distress Syndrome Depend on Dose and Etiology. Cellular Physiology and Biochemistry, 2015, 36, 1644-1658.	1.1	26
175	Early and late effects of bone marrow-derived mononuclear cell therapy on lung and distal organs in experimental sepsis. Respiratory Physiology and Neurobiology, 2011, 178, 304-314.	0.7	25
176	Impact of Different Ventilation Strategies on Driving Pressure, Mechanical Power, and Biological Markers During Open Abdominal Surgery in Rats. Anesthesia and Analgesia, 2017, 125, 1364-1374.	1.1	25
177	Time course of respiratory mechanics and pulmonary structural remodelling in acute lung injury. Respiratory Physiology and Neurobiology, 2004, 143, 49-61.	0.7	24
178	Year in review in Intensive Care Medicine 2011: III. ARDS and ECMO, weaning, mechanical ventilation, noninvasive ventilation, pediatrics and miscellanea. Intensive Care Medicine, 2012, 38, 542-556.	3.9	24
179	Infusion of Bone Marrow Mononuclear Cells Reduces Lung Fibrosis but Not Inflammation in the Late Stages of Murine Silicosis. PLoS ONE, 2014, 9, e109982.	1.1	24
180	Effects of Bone Marrow–Derived Mononuclear Cells From Healthy or Acute Respiratory Distress Syndrome Donors on Recipient Lung-Injured Mice. Critical Care Medicine, 2014, 42, e510-e524.	0.4	24

#	Article	IF	CITATIONS
181	Expanded endothelial progenitor cells mitigate lung injury in septic mice. Stem Cell Research and Therapy, 2015, 6, 230.	2.4	24
182	Ventilator-induced Lung Injury: Power to the Mechanical Power. Anesthesiology, 2016, 125, 1070-1071.	1.3	24
183	Effects of Positive End-Expiratory Pressure on Lung Recruitment, Respiratory Mechanics, and Intracranial Pressure in Mechanically Ventilated Brain-Injured Patients. Frontiers in Physiology, 2021, 12, 711273.	1.3	24
184	Early short-term versus prolonged low-dose methylprednisolone therapy in acute lung injury. European Respiratory Journal, 2009, 33, 634-645.	3.1	23
185	The biological effects of higher and lower positive end-expiratory pressure in pulmonary and extrapulmonary acute lung injury with intra-abdominal hypertension. Critical Care, 2014, 18, R121.	2.5	23
186	Effects of bone marrow mononuclear cells from healthy or ovalbumin-induced lung inflammation donors on recipient allergic asthma mice. Stem Cell Research and Therapy, 2014, 5, 108.	2.4	23
187	Effects of pressure support ventilation on ventilator-induced lung injury in mild acute respiratory distress syndrome depend on level of positive end-expiratory pressure. European Journal of Anaesthesiology, 2018, 35, 298-306.	0.7	23
188	Mesenchymal stromal cell therapy attenuated lung and kidney injury but not brain damage in experimental cerebral malaria. Stem Cell Research and Therapy, 2015, 6, 102.	2.4	22
189	Variable stretch reduces the pro-inflammatory response of alveolar epithelial cells. PLoS ONE, 2017, 12, e0182369.	1.1	22
190	Effects of mesenchymal stromal cells play a role the oxidant/antioxidant balance in a murine model of asthma. Allergologia Et Immunopathologia, 2018, 46, 136-143.	1.0	22
191	Impact of one versus two doses of mesenchymal stromal cells on lung and cardiovascular repair in experimental emphysema. Stem Cell Research and Therapy, 2018, 9, 296.	2.4	22
192	The Yin and Yang of Tyrosine Kinase Inhibition During Experimental Polymicrobial Sepsis. Frontiers in Immunology, 2018, 9, 901.	2.2	22
193	Gradually Increasing Tidal Volume May Mitigate Experimental Lung Injury in Rats. Anesthesiology, 2019, 130, 767-777.	1.3	22
194	Which component of mechanical power is most important in causing VILI?. Critical Care, 2020, 24, 39.	2.5	22
195	Mitochondria in Focus: From Function to Therapeutic Strategies in Chronic Lung Diseases. Frontiers in Immunology, 2021, 12, 782074.	2.2	22
196	Toxicity of a cyanobacterial extract containing microcystins to mouse lungs. Brazilian Journal of Medical and Biological Research, 2004, 37, 1225-1229.	0.7	21
197	Effects of oleanolic acid on pulmonary morphofunctional and biochemical variables in experimental acute lung injury. Respiratory Physiology and Neurobiology, 2011, 179, 129-136.	0.7	21
198	Effects of Ultraprotective Ventilation, Extracorporeal Carbon Dioxide Removal, and Spontaneous Breathing on Lung Morphofunction and Inflammation in Experimental Severe Acute Respiratory Distress Syndrome. Anesthesiology, 2015, 122, 631-646.	1.3	21

#	Article	IF	CITATIONS
199	Effects of Bone Marrow Mesenchymal Stromal Cell Therapy in Experimental Cutaneous Leishmaniasis in BALB/c Mice Induced by Leishmania amazonensis. Frontiers in Immunology, 2017, 8, 893.	2.2	21
200	JMF2-1, a lidocaine derivative acting on airways spasm and lung allergic inflammation in rats. Journal of Allergy and Clinical Immunology, 2007, 119, 219-225.	1.5	20
201	Intravenous Glutamine Administration Reduces Lung and Distal Organ Injury in Malnourished Rats With Sepsis. Shock, 2014, 41, 222-232.	1.0	20
202	Effects of short-term propofol and dexmedetomidine on pulmonary morphofunction and biological markers in experimental mild acute lung injury. Respiratory Physiology and Neurobiology, 2014, 203, 45-50.	0.7	20
203	Open lung approach with low tidal volume mechanical ventilation attenuates lung injury in rats with massive brain damage. Critical Care, 2014, 18, R59.	2.5	20
204	Differential effects of the cystic fibrosis lung inflammatory environment on mesenchymal stromal cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 319, L908-L925.	1.3	20
205	Healthy <i>versus</i> inflamed lung environments differentially affect mesenchymal stromal cells. European Respiratory Journal, 2021, 58, 2004149.	3.1	20
206	Physiological and Pathophysiological Consequences of Mechanical Ventilation. Seminars in Respiratory and Critical Care Medicine, 2022, 43, 321-334.	0.8	20
207	Open lung approach associated with high-frequency oscillatory or low tidal volume mechanical ventilation improves respiratory function and minimizes lung injury in healthy and injured rats. Critical Care, 2010, 14, R183.	2.5	19
208	Year in review in Intensive Care Medicine 2011: I. Nephrology, epidemiology, nutrition and therapeutics, neurology, ethical and legal issues, experimentals. Intensive Care Medicine, 2012, 38, 192-209.	3.9	19
209	Effects of different tidal volumes in pulmonary and extrapulmonary lung injury with or without intraabdominal hypertension. Intensive Care Medicine, 2012, 38, 499-508.	3.9	19
210	Biphasic positive airway pressure minimizes biological impact on lung tissue in mild acute lung injury independent of etiology. Critical Care, 2013, 17, R228.	2.5	19
211	Hypoxic preconditioning enhances mesenchymal stromal cell lung repair capacity. Stem Cell Research and Therapy, 2015, 6, 130.	2.4	19
212	Endotoxin-induced lung alveolar cell injury causes brain cell damage. Experimental Biology and Medicine, 2015, 240, 135-142.	1.1	19
213	Ten golden rules for individualized mechanical ventilation in acute respiratory distress syndrome. Journal of Intensive Medicine, 2021, 1, 42-51.	0.8	19
214	 Protective effects of phosphodiesterase inhibitors on lung function and remodeling in a murine model of chronic asthma. Brazilian Journal of Medical and Biological Research, 2006, 39, 283-287.	0.7	19
215	Degree of endothelium injury promotes fibroelastogenesis in experimental acute lung injury. Respiratory Physiology and Neurobiology, 2010, 173, 179-188.	0.7	18
216	Prolonged glucocorticoid treatment and secondary prevention in acute respiratory distress syndrome. Expert Review of Respiratory Medicine, 2010, 4, 201-210.	1.0	18

#	Article	IF	CITATIONS
217	Effects of inhalational anaesthetics in experimental allergic asthma. Anaesthesia, 2014, 69, 573-582.	1.8	18
218	Therapeutic effects of LASSBio-596 in an elastase-induced mouse model of emphysema. Frontiers in Physiology, 2015, 6, 267.	1.3	18
219	Fast Versus Slow Recruitment Maneuver at Different Degrees of Acute Lung Inflammation Induced by Experimental Sepsis. Anesthesia and Analgesia, 2016, 122, 1089-1100.	1.1	18
220	Variability in Tidal Volume Affects Lung and Cardiovascular Function Differentially in a Rat Model of Experimental Emphysema. Frontiers in Physiology, 2017, 8, 1071.	1.3	18
221	Static and Dynamic Transpulmonary Driving Pressures Affect Lung and Diaphragm Injury during Pressure-controlled versus Pressure-support Ventilation in Experimental Mild Lung Injury in Rats. Anesthesiology, 2020, 132, 307-320.	1.3	18
222	Tracheostomy Timing and Outcome in Severe COVID-19: The WeanTrach Multicenter Study. Journal of Clinical Medicine, 2021, 10, 2651.	1.0	18
223	Modelling the mechanical effects of tracheal tubes in normal subjects. European Respiratory Journal, 1995, 8, 121-126.	3.1	17
224	Suture or Prosthetic Reconstruction of Experimental Diaphragmatic Defects. Chest, 2000, 117, 1443-1448.	0.4	17
225	Recruitment maneuver: RAMP versus CPAP pressure profile in a model of acute lung injury. Respiratory Physiology and Neurobiology, 2009, 169, 62-68.	0.7	17
226	Effects of pentoxifylline on intestinal bacterial overgrowth, bacterial translocation and spontaneous bacterial peritonitis in cirrhotic rats with ascites. Digestive and Liver Disease, 2012, 44, 239-244.	0.4	17
227	Early and late acute lung injury and their association with distal organ damage in murine malaria. Respiratory Physiology and Neurobiology, 2013, 186, 65-72.	0.7	17
228	Insult-dependent effect of bone marrow cell therapy on inflammatory response in a murine model of extrapulmonary acute respiratory distress syndrome. Stem Cell Research and Therapy, 2013, 4, 123.	2.4	17
229	Comparison between effects of pressure support and pressure-controlled ventilation on lung and diaphragmatic damage in experimental emphysema. Intensive Care Medicine Experimental, 2016, 4, 35.	0.9	17
230	Sepsis Impairs Thyroid Hormone Signaling and Mitochondrial Function in the Mouse Diaphragm. Thyroid, 2020, 30, 1079-1090.	2.4	17
231	The Role of Dysbiosis in Critically III Patients With COVID-19 and Acute Respiratory Distress Syndrome. Frontiers in Medicine, 2021, 8, 671714.	1.2	17
232	Effects of static magnetic fields on natural or magnetized mesenchymal stromal cells: Repercussions for magnetic targeting. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 2075-2085.	1.7	17
233	Ischaemic stroke-induced distal organ damage: pathophysiology and new therapeutic strategies. Intensive Care Medicine Experimental, 2020, 8, 23.	0.9	17
234	Effects of different positive end-expiratory pressure titration strategies during prone positioning in patients with acute respiratory distress syndrome: a prospective interventional study. Critical Care, 2022, 26, 82.	2.5	16

#	Article	IF	CITATIONS
235	Impact of lung remodelling on respiratory mechanics in a model of severe allergic inflammation. Respiratory Physiology and Neurobiology, 2008, 160, 239-248.	0.7	15
236	Heme Oxygenase Inhibition Enhances Neutrophil Migration Into the Bronchoalveolar Spaces and Improves the Outcome of Murine Pneumonia-Induced Sepsis. Shock, 2013, 39, 389-396.	1.0	15
237	ARDS: what experimental models have taught us. Intensive Care Medicine, 2016, 42, 806-810.	3.9	15
238	Differential Regulation of Thyroid Hormone Metabolism Target Genes during Non-thyroidal Illness Syndrome Triggered by Fasting or Sepsis in Adult Mice. Frontiers in Physiology, 2017, 8, 828.	1.3	15
239	Elastic power but not driving power is the key promoter of ventilator-induced lung injury in experimental acute respiratory distress syndrome. Critical Care, 2020, 24, 284.	2.5	15
240	Mechanical ventilation in neurocritical care setting: A clinical approach. Bailliere's Best Practice and Research in Clinical Anaesthesiology, 2021, 35, 207-220.	1.7	15
241	Mitochondria-Rich Fraction Isolated From Mesenchymal Stromal Cells Reduces Lung and Distal Organ Injury in Experimental Sepsis*. Critical Care Medicine, 2021, 49, e880-e890.	0.4	15
242	Is there a place for mesenchymal stromal cell-based therapies in the therapeutic armamentarium against COVID-19?. Stem Cell Research and Therapy, 2021, 12, 425.	2.4	15
243	Pathophysiology and clinical consequences of arterial blood gases and pH after cardiac arrest. Intensive Care Medicine Experimental, 2020, 8, 19.	0.9	15
244	On the preparation of lung strip for tissue mechanics measurement. Respiratory Physiology and Neurobiology, 2003, 134, 255-262.	0.7	14
245	Single and repeated bleomycin intratracheal instillations lead to different biomechanical changes in lung tissue. Respiratory Physiology and Neurobiology, 2009, 166, 41-46.	0.7	14
246	Year in review in Intensive Care Medicine 2012: III. Noninvasive ventilation, monitoring and patient–ventilator interactions, acute respiratory distress syndrome, sedation, paediatrics and miscellanea. Intensive Care Medicine, 2013, 39, 543-557.	3.9	14
247	Therapeutic effects of bone marrow-derived mononuclear cells from healthy or silicotic donors on recipient silicosis mice. Stem Cell Research and Therapy, 2017, 8, 259.	2.4	14
248	Glutamine Therapy Reduces Inflammation and Extracellular Trap Release in Experimental Acute Respiratory Distress Syndrome of Pulmonary Origin. Nutrients, 2019, 11, 831.	1.7	14
249	Role of the renin-angiotensin system in the development of severe COVID-19 in hypertensive patients. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 319, L596-L602.	1.3	14
250	Autologous bone marrow-derived mononuclear cell therapy in three patients with severe asthma. Stem Cell Research and Therapy, 2020, 11, 167.	2.4	14
251	Mesenchymal Stromal Cells From Emphysematous Donors and Their Extracellular Vesicles Are Unable to Reverse Cardiorespiratory Dysfunction in Experimental Severe Emphysema. Frontiers in Cell and Developmental Biology, 2021, 9, 661385.	1.8	14
252	Respiratory Mechanics After Prosthetic Reconstruction of the Chest Wall in Normal Rats. Chest, 1998, 113, 1667-1672.	0.4	13

#	Article	IF	CITATIONS
253	General Anesthesia Closes the Lungs: Keep Them Resting. Turkish Journal of Anaesthesiology and Reanimation, 2016, 44, 163-164.	0.8	13
254	Regular and moderate aerobic training before allergic asthma induction reduces lung inflammation and remodeling. Scandinavian Journal of Medicine and Science in Sports, 2016, 26, 1360-1372.	1.3	13
255	Cell therapy for acute respiratory distress syndrome patients: the START study. Journal of Thoracic Disease, 2019, 11, S1329-S1332.	0.6	13
256	The renin–angiotensin–aldosterone system: Role in pathogenesis and potential therapeutic target in COVIDâ€19. Pharmacology Research and Perspectives, 2020, 8, e00623.	1.1	13
257	Mesenchymal stromal cells protect against vascular damage and depression-like behavior in mice surviving cerebral malaria. Stem Cell Research and Therapy, 2020, 11, 367.	2.4	13
258	Emerging therapies for COVID-19 pneumonia. Expert Opinion on Investigational Drugs, 2020, 29, 633-637.	1.9	13
259	What have we learned from animal models of ventilator-induced lung injury?. Intensive Care Medicine, 2020, 46, 2377-2380.	3.9	13
260	Novel Synthetic and Natural Therapies for Traumatic Brain Injury. Current Neuropharmacology, 2021, 19, 1661-1687.	1.4	13
261	Nitazoxanide in Patients Hospitalized With COVID-19 Pneumonia: A Multicentre, Randomized, Double-Blind, Placebo-Controlled Trial. Frontiers in Medicine, 2022, 9, 844728.	1.2	13
262	Bone Marrow-Derived Mononuclear Cells Promote Improvement in Glomerular Function in Rats with Early Diabetic Nephropathy. Cellular Physiology and Biochemistry, 2013, 32, 699-718.	1.1	12
263	How to minimise ventilator-induced lung injury in transplanted lungs. European Journal of Anaesthesiology, 2015, 32, 828-836.	0.7	12
264	Mesenchymal Stem Cell Therapy for Acute Respiratory Distress Syndrome. Anesthesiology, 2015, 122, 238-240.	1.3	12
265	A mortality score for acute respiratory distress syndrome: predicting the future without a crystal ball. Journal of Thoracic Disease, 2016, 8, 1872-1876.	0.6	12
266	Comparison between Variable and Conventional Volume-Controlled Ventilation on Cardiorespiratory Parameters in Experimental Emphysema. Frontiers in Physiology, 2016, 7, 277.	1.3	12
267	Moderate Aerobic Training Improves Cardiorespiratory Parameters in Elastase-Induced Emphysema. Frontiers in Physiology, 2016, 7, 329.	1.3	12
268	Sevoflurane, Compared With Isoflurane, Minimizes Lung Damage in Pulmonary but Not in Extrapulmonary Acute Respiratory Distress Syndrome in Rats. Anesthesia and Analgesia, 2017, 125, 491-498.	1.1	12
269	Ghrelin therapy improves lung and cardiovascular function in experimental emphysema. Respiratory Research, 2017, 18, 185.	1.4	12
270	Effects of crystalloid, hyper-oncotic albumin, and iso-oncotic albumin on lung and kidney damage in experimental acute lung injury. Respiratory Research, 2019, 20, 155.	1.4	12

#	Article	IF	CITATIONS
271	Escalate and De-Escalate Therapies for Intracranial Pressure Control in Traumatic Brain Injury. Frontiers in Neurology, 2020, 11, 564751.	1.1	12
272	Magnetic targeting increases mesenchymal stromal cell retention in lungs and enhances beneficial effects on pulmonary damage in experimental silicosis. Stem Cells Translational Medicine, 2020, 9, 1244-1256.	1.6	12
273	Acute respiratory distress syndrome subphenotypes and therapy responsive traits among preclinical models: protocol for a systematic review and meta-analysis. Respiratory Research, 2020, 21, 81.	1.4	12
274	Ten things you need to know about intensive care unit management of mechanically ventilated patients with COVID-19. Expert Review of Respiratory Medicine, 2021, 15, 1293-1302.	1.0	12
275	Early Effects of Passive Leg-Raising Test, Fluid Challenge, and Norepinephrine on Cerebral Autoregulation and Oxygenation in COVID-19 Critically III Patients. Frontiers in Neurology, 2021, 12, 674466.	1.1	12
276	Understanding the pathophysiology of typical acute respiratory distress syndrome and severe COVID-19. Expert Review of Respiratory Medicine, 2022, , 1-10.	1.0	12
277	Mouse strain dependence of lung tissue mechanics: Role of specific extracellular matrix composition. Respiratory Physiology and Neurobiology, 2006, 152, 186-196.	0.7	11
278	Impact of Bacillus Calmette–Guérin Moreau vaccine on lung remodeling in experimental asthma. Respiratory Physiology and Neurobiology, 2013, 189, 614-623.	0.7	11
279	Time course of pulmonary burden in mice exposed to residual oil fly ash. Frontiers in Physiology, 2014, 5, 366.	1.3	11
280	Single Tyrosine Mutation in AAV8 Vector Capsid Enhances Gene Lung Delivery and Does Not Alter Lung Morphofunction in Mice. Cellular Physiology and Biochemistry, 2014, 34, 681-690.	1.1	11
281	Therapeutic effect of Lipoxin A4 in malaria-induced acute lung injury. Journal of Leukocyte Biology, 2018, 103, 657-670.	1.5	11
282	The impact of fluid status and decremental PEEP strategy on cardiac function and lung and kidney damage in mild-moderate experimental acute respiratory distress syndrome. Respiratory Research, 2021, 22, 214.	1.4	11
283	Effects of dexmedetomidine on respiratory mechanics and control of breathing in normal rats. Respiratory Physiology and Neurobiology, 2006, 154, 342-350.	0.7	10
284	Oleanolic acid improves pulmonary morphofunctional parameters in experimental sepsis by modulating oxidative and apoptotic processes. Respiratory Physiology and Neurobiology, 2013, 189, 484-490.	0.7	10
285	Year in review in Intensive Care Medicine 2012. II: Pneumonia and infection, sepsis, coagulation, hemodynamics, cardiovascular and microcirculation, critical care organization, imaging, ethics and legal issues. Intensive Care Medicine, 2013, 39, 345-364.	3.9	10
286	Year in review in Intensive Care Medicine 2012: I. Neurology and neurointensive care, epidemiology and nephrology, biomarkers and inflammation, nutrition, experimentals. Intensive Care Medicine, 2013, 39, 232-246.	3.9	10
287	Variable ventilation improves pulmonary function and reduces lung damage without increasing bacterial translocation in a rat model of experimental pneumonia. Respiratory Research, 2016, 17, 158.	1.4	10
288	Exogenous pulmonary surfactant prevents the development of intraâ€abdominal adhesions in rats. Journal of Cellular and Molecular Medicine, 2016, 20, 632-643.	1.6	10

#	Article	IF	CITATIONS
289	Tyrosine Mutation in AAV9 Capsid Improves Gene Transfer to the Mouse Lung. Cellular Physiology and Biochemistry, 2016, 39, 544-553.	1.1	10
290	Respiratory and Systemic Effects of LASSBio596 Plus Surfactant in Experimental Acute Respiratory Distress Syndrome. Cellular Physiology and Biochemistry, 2016, 38, 821-835.	1.1	10
291	Perioperative anaesthetic management of patients with or at risk of acute distress respiratory syndrome undergoing emergency surgery. BMC Anesthesiology, 2019, 19, 153.	0.7	10
292	Endotoxin-Induced Emphysema Exacerbation: A Novel Model of Chronic Obstructive Pulmonary Disease Exacerbations Causing Cardiopulmonary Impairment and Diaphragm Dysfunction. Frontiers in Physiology, 2019, 10, 664.	1.3	10
293	Impact of experimental obesity on diaphragm structure, function, and bioenergetics. Journal of Applied Physiology, 2020, 129, 1062-1074.	1.2	10
294	Estimating the Damaging Power of High-Stress Ventilation. Respiratory Care, 2020, 65, 1046-1052.	0.8	10
295	Time course of lung inflammatory and fibrogenic responses during protective mechanical ventilation in healthy rats. Respiratory Physiology and Neurobiology, 2011, 178, 323-328.	0.7	9
296	Effects of acute hypercapnia with and without acidosis on lung inflammation and apoptosis in experimental acute lung injury. Respiratory Physiology and Neurobiology, 2015, 205, 1-6.	0.7	9
297	Optimal mechanical ventilation strategies to minimize ventilator-induced lung injury in non-injured and injured lungs. Expert Review of Respiratory Medicine, 2016, 10, 1243-1245.	1.0	9
298	Positive end-expiratory pressure titrated according to respiratory system mechanics or to ARDSNetwork table did not guarantee positive end-expiratory transpulmonary pressure in acute respiratory distress syndrome. Journal of Critical Care, 2018, 48, 433-442.	1.0	9
299	Effects of the FGF receptorâ€1 inhibitor, infigratinib, with or without sildenafil, in experimental pulmonary arterial hypertension. British Journal of Pharmacology, 2019, 176, 4462-4473.	2.7	9
300	Niclosamide attenuates lung vascular remodeling in experimental pulmonary arterial hypertension. European Journal of Pharmacology, 2020, 887, 173438.	1.7	9
301	Effects of a novel roflumilast and formoterol fumarate dry powder inhaler formulation in experimental allergic asthma. International Journal of Pharmaceutics, 2020, 588, 119771.	2.6	9
302	Effects of variable versus nonvariable controlled mechanical ventilation on pulmonary inflammation in experimental acute respiratory distress syndrome in pigs. British Journal of Anaesthesia, 2020, 124, 430-439.	1.5	9
303	Sepsis Disrupts Mitochondrial Function and Diaphragm Morphology. Frontiers in Physiology, 2021, 12, 704044.	1.3	9
304	Effects of uni- and bilateral phrenicotomy on active and passive respiratory mechanics in rats. Respiration Physiology, 1997, 110, 9-18.	2.8	8
305	Inflammatory related changes in lung tissue mechanics after bleomycin-induced lung injury. Respiratory Physiology and Neurobiology, 2008, 160, 196-203.	0.7	8
306	Role of the extracellular matrix in the genesis of ventilator-induced lung injury. Medizinische Klinik - Intensivmedizin Und Notfallmedizin, 2018, 113, 2-6.	0.4	8

#	Article	IF	CITATIONS
307	Understanding the Mysteries of Mechanical Power. Anesthesiology, 2020, 132, 949-950.	1.3	8
308	Early impact of abdominal compartment syndrome on liver, kidney and lung damage in a rodent model. Anaesthesiology Intensive Therapy, 2017, 49, 130-138.	0.4	8
309	Time-Controlled Adaptive Ventilation Versus Volume-Controlled Ventilation in Experimental Pneumonia. Critical Care Medicine, 2021, 49, 140-150.	0.4	8
310	Comparative effects of dexmedetomidine and propofol on brain and lung damage in experimental acute ischemic stroke. Scientific Reports, 2021, 11, 23133.	1.6	8
311	Mechanical Power Correlates With Lung Inflammation Assessed by Positron-Emission Tomography in Experimental Acute Lung Injury in Pigs. Frontiers in Physiology, 2021, 12, 717266.	1.3	8
312	Early versus late intubation in COVID-19 patients failing helmet CPAP: A quantitative computed tomography study. Respiratory Physiology and Neurobiology, 2022, 301, 103889.	0.7	8
313	The Effect of Experimental Pleurodesis Caused by Aluminum Hydroxide on Lung and Chest Wall Mechanics. Lung, 2001, 179, 293-303.	1.4	7
314	Desenvolvimento de um novo modelo experimental de sÃndrome do compartimento abdominal. Revista Do Colegio Brasileiro De Cirurgioes, 2011, 38, 417-421.	0.3	7
315	Controlled invasive mechanical ventilation strategies in obese patients undergoing surgery. Expert Review of Respiratory Medicine, 2017, 11, 443-452.	1.0	7
316	Effects of pressure support and pressure-controlled ventilation on lung damage in a model of mild extrapulmonary acute lung injury with intra-abdominal hypertension. PLoS ONE, 2017, 12, e0178207.	1.1	7
317	Immunomodulators in anesthesia. Current Opinion in Anaesthesiology, 2021, 34, 357-363.	0.9	7
318	Oxidative Stress-Derived Mitochondrial Dysfunction in Chronic Obstructive Pulmonary Disease: A Concise Review. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-11.	1.9	7
319	Fluids in ARDS: more pros than cons. Intensive Care Medicine Experimental, 2020, 8, 32.	0.9	7
320	Immunomodulatory effects of anesthetic agents in perioperative medicine. Minerva Anestesiologica, 2020, 86, 181-195.	0.6	7
321	Ultraprotective versus apneic ventilation in acute respiratory distress syndrome patients with extracorporeal membrane oxygenation: a physiological study. Journal of Intensive Care, 2022, 10, 12.	1.3	7
322	Respiratory mechanics and morphometric changes during anesthesia with ketamine in normal rats. Brazilian Journal of Medical and Biological Research, 2001, 34, 1217-1223.	0.7	6
323	Variable Ventilation Improved Respiratory System Mechanics and Ameliorated Pulmonary Damage in a Rat Model of Lung Ischemia-Reperfusion. Frontiers in Physiology, 2017, 8, 257.	1.3	6
324	Cell-Free Therapies: Novel Approaches for COVID-19. Frontiers in Immunology, 2020, 11, 583017.	2.2	6

#	Article	IF	CITATIONS
325	Iso-Oncotic Albumin Mitigates Brain and Kidney Injury in Experimental Focal Ischemic Stroke. Frontiers in Neurology, 2020, 11, 1001.	1.1	6
326	Impact of positive biphasic pressure during low and high inspiratory efforts in Pseudomonas aeruginosa-induced pneumonia. PLoS ONE, 2021, 16, e0246891.	1.1	6
327	Immunomodulatory effects of anesthetics in obese patients. World Journal of Critical Care Medicine, 2017, 6, 140.	0.8	6
328	Temporal evolution of pneumothorax: respiratory mechanical and histopathological study. Respiration Physiology, 2000, 119, 41-50.	2.8	5
329	Effects of different nutritional support on lung mechanics and remodelling in undernourished rats. Respiratory Physiology and Neurobiology, 2008, 160, 54-64.	0.7	5
330	Does the use of recombinant AAV2 in pulmonary gene therapy damage lung function?. Respiratory Physiology and Neurobiology, 2008, 160, 91-98.	0.7	5
331	On the crucial ventilatory setting adjustment from two- to one-lung ventilation. Respiratory Physiology and Neurobiology, 2011, 179, 198-204.	0.7	5
332	Vital capacity and inspiratory capacity as additional parameters to evaluate bronchodilator response in asthmatic patients: a cross sectional study. BMC Pulmonary Medicine, 2012, 12, 49.	0.8	5
333	Effects of lipopolysaccharide-induced inflammation on initial lung fibrosis during open-lung mechanical ventilation in rats. Respiratory Physiology and Neurobiology, 2015, 212-214, 25-32.	0.7	5
334	Self-complementary and tyrosine-mutant rAAV vectors enhance transduction in cystic fibrosis bronchial epithelial cells. Experimental Cell Research, 2018, 372, 99-107.	1.2	5
335	Impact of different intratracheal flows during lung decellularization on extracellular matrix composition and mechanics. Regenerative Medicine, 2018, 13, 519-530.	0.8	5
336	Combined therapy with adipose tissue-derived mesenchymal stromal cells and meglumine antimoniate controls lesion development and parasite load in murine cutaneous leishmaniasis caused by Leishmania amazonensis. Stem Cell Research and Therapy, 2020, 11, 374.	2.4	5
337	Effect of patient–ventilator asynchrony on lung and diaphragmatic injury in experimental acute respiratory distress syndrome in a porcine model. British Journal of Anaesthesia, 2023, 130, e169-e178.	1.5	5
338	FG-4497: a new target for acute respiratory distress syndrome?. Expert Review of Respiratory Medicine, 2015, 9, 405-409.	1.0	5
339	Respiratory mechanics and morphometric changes during pneumoperitoneum in normal rats. European Respiratory Journal, 1997, 10, 1321-1326.	3.1	4
340	Evaluation of respiratory mechanics and lung histology in a model of atelectasis. Respiratory Physiology and Neurobiology, 2003, 137, 61-68.	0.7	4
341	Fisiopatologia e manejo clÃnico da ventilação seletiva. Jornal Brasileiro De Pneumologia, 2004, 30, 566-573.	0.4	4
342	Respiratory changes in a murine model of spontaneous systemic lupus erythematosus. Respiratory Physiology and Neurobiology, 2006, 153, 107-114.	0.7	4

#	Article	IF	CITATIONS
343	Microcrystalline cellulose induces time-dependent lung functional and inflammatory changes. Respiratory Physiology and Neurobiology, 2008, 164, 331-337.	0.7	4
344	Does the use of recombinant AAV5 in pulmonary gene therapy lead to lung damage?. Respiratory Physiology and Neurobiology, 2009, 168, 203-209.	0.7	4
345	Ventilator-induced Lung Injury in Healthy and Diseased Lungs. Anesthesiology, 2011, 115, 923-925.	1.3	4
346	Adeno-associated virus for cystic fibrosis gene therapy. Brazilian Journal of Medical and Biological Research, 2011, 44, 1097-1104.	0.7	4
347	Distensibility index of the inferior vena cava in experimental acute respiratory distress syndrome. Respiratory Physiology and Neurobiology, 2017, 237, 7-12.	0.7	4
348	Intraoperative immunomodulatory effects of sevoflurane versus total intravenous anesthesia with propofol in bariatric surgery (the OBESITA trial): study protocol for a randomized controlled pilot trial. Trials, 2019, 20, 300.	0.7	4
349	Controversies when using mechanical ventilation in obese patients with and without acute distress respiratory syndrome. Expert Review of Respiratory Medicine, 2019, 13, 471-479.	1.0	4
350	Effects of Protective Mechanical Ventilation With Different PEEP Levels on Alveolar Damage and Inflammation in a Model of Open Abdominal Surgery: A Randomized Study in Obese Versus Non-obese Rats. Frontiers in Physiology, 2019, 10, 1513.	1.3	4
351	Application of novel nanotechnologies in asthma. Annals of Translational Medicine, 2020, 8, 159-159.	0.7	4
352	Recruitment maneuvers for acute respiratory distress syndrome: the panorama in 2016. Revista Brasileira De Terapia Intensiva, 2016, 28, 104-6.	0.1	4
353	Effect of salicylate on respiratory mechanics and postinspiratory muscle pressure. Respiration Physiology, 1994, 97, 189-198.	2.8	3
354	Effects of prosthetic reconstruction of the abdominal wall on respiratory mechanics in rats. Respiration Physiology, 1999, 115, 35-43.	2.8	3
355	Intratracheal Instillation of Lipopolymeric Vectors and the Effect on Mice Lung Physiology. Cellular Physiology and Biochemistry, 2012, 29, 791-798.	1.1	3
356	Fluids in acute respiratory distress syndrome. Current Opinion in Critical Care, 2014, 20, 104-112.	1.6	3
357	Effects of early and late pneumothorax drainage on the development of pulmonary oedema. Respiratory Physiology and Neurobiology, 2014, 195, 27-36.	0.7	3
358	Association with Amino Acids Does Not Enhance Efficacy of Polymerized Liposomes As a System for Lung Gene Delivery. Frontiers in Physiology, 2016, 7, 151.	1.3	3
359	The authors reply. Critical Care Medicine, 2017, 45, e328-e329.	0.4	3
360	Supplemental oxygen or something else?. Journal of Thoracic Disease, 2018, 10, S3211-S3214.	0.6	3

#	Article	IF	CITATIONS
361	hMSCs as an alternative therapeutic option for asthma with neutrophil mediated inflammation. Experimental and Molecular Medicine, 2018, 50, 1-2.	3.2	3
362	Comparative effects of neurally adjusted ventilatory assist and variable pressure support on lung and diaphragmatic function in a model of acute respiratory distress syndrome. European Journal of Anaesthesiology, 2021, 38, 32-40.	0.7	3
363	Effects of Body Position and Hypovolemia on the Regional Distribution of Pulmonary Perfusion During One-Lung Ventilation in Endotoxemic Pigs. Frontiers in Physiology, 2021, 12, 717269.	1.3	3
364	Better Physiology does not Necessarily Translate Into Improved Clinical Outcome. Turkish Journal of Anaesthesiology and Reanimation, 2016, 44, 165-166.	0.8	3
365	Immunomodulatory and Anti-fibrotic Effects Following the Infusion of Umbilical Cord Mesenchymal Stromal Cells in a Critically III Patient With COVID-19 Presenting Lung Fibrosis: A Case Report. Frontiers in Medicine, 2021, 8, 767291.	1.2	3
366	DJ-1 binds to Rubicon to Impair LC-3 Associated Phagocytosis. Cell Death and Differentiation, 2022, 29, 2024-2033.	5.0	3
367	Pulmonary morphofunctional effects of acute myocardial infarction. European Respiratory Journal, 1999, 14, 751.	3.1	2
368	Inibidores de fosfodiesterases: novas perspectivas de uma antiga terapia na asma?. Jornal De Pneumologia, 2003, 29, 405-412.	0.1	2
369	Respiratory mechanics and pleural remodelling in pleurodesis induced by barium sulphate. Respiratory Physiology and Neurobiology, 2004, 139, 271-280.	0.7	2
370	Effects of amiodarone on lung tissue mechanics and parenchyma remodeling. Respiratory Physiology and Neurobiology, 2008, 162, 126-131.	0.7	2
371	To prevent or cure acute respiratory distress syndrome. Current Opinion in Critical Care, 2014, 20, 1-2.	1.6	2
372	Pathophysiology of Acute Respiratory Distress Syndrome. , 2017, , 15-27.		2
373	In situ evidence of collagen V and signaling pathway of found inflammatory zone 1 (FIZZ1) is associated with silicotic granuloma in lung mice. Pathology Research and Practice, 2020, 216, 153094.	1.0	2
374	Remote Exercise Capacity Assessment in Home-Based Telerehabilitation. Archives of Physical Medicine and Rehabilitation, 2021, 102, e4-e5.	0.5	2
375	Impact of different frequencies of controlled breath and pressure-support levels during biphasic positive airway pressure ventilation on the lung and diaphragm in experimental mild acute respiratory distress syndrome. PLoS ONE, 2021, 16, e0256021.	1.1	2
376	Effects of propofol and its formulation components on macrophages and neutrophils in obese and lean animals. Pharmacology Research and Perspectives, 2021, 9, e00873.	1.1	2
377	Sepsis Disrupts Mitochondrial Function and Diaphragm Morphology. Frontiers in Physiology, 2021, 12, 704044.	1.3	2
378	Effects of time-controlled adaptive ventilation on cardiorespiratory parameters and inflammatory response in experimental emphysema. Journal of Applied Physiology, 2022, 132, 564-574.	1.2	2

#	ARTICLE	IF	CITATIONS
379	A more gradual positive end-expiratory pressure increase reduces lung damage and improves cardiac function in experimental acute respiratory distress syndrome. Journal of Applied Physiology, 2022, 132, 375-387.	1.2	2
380	Corticosteroids therapy in pediatric acute respiratory distress syndrome. Revista Brasileira De Terapia Intensiva, 2010, 22, 384-94.	0.1	2
381	Patients With Suspected Severe Adverse Reactions to COVID-19 Vaccination Admitted to Intensive Care Unit: A Case Report. Frontiers in Medicine, 2022, 9, 823837.	1.2	2
382	Intrabronchial Instillation Of Bone Marrow Derived Mononuclear Cells In Silicotic Patients. , 2010, , .		1
383	Effects Of Different Recruitment Maneuvers On Lung Morpho-function And Alveolar Stress. , 2010, , .		1
384	In Reply. Anesthesiology, 2015, 123, 1479-1480.	1.3	1
385	In Response. Anesthesia and Analgesia, 2016, 123, 790-791.	1.1	1
386	Effects of mechanical ventilation on gene expression profiles in renal allografts from brain dead rats. Respiratory Physiology and Neurobiology, 2017, 246, 17-25.	0.7	1
387	A critical approach to personalised medicine in ARDS. Lancet Respiratory Medicine, the, 2020, 8, 218-219.	5.2	1
388	Response to letter to the editor: catastrophic antiphospholipid antibody syndrome and multiple organ dysfunctions in critically ill patients with COVID-19. Expert Review of Respiratory Medicine, 2020, 14, 1073-1074.	1.0	1
389	Effects of variable versus non-variable controlled mechanical ventilation: response to comment on Br J Anaesth 2020; 124: 430–9. British Journal of Anaesthesia, 2020, 124, e224-e225.	1.5	1
390	The Potential of Factors Released from Mesenchymal Stromal Cells as Therapeutic Agents in the Lung. , 2019, , 57-70.		1
391	Ventilator-induced lung injury. , 2012, , 1-18.		1
392	LASSBio-596: Of the discovery to the pre-clinical studies. Revista Virtual De Quimica, 2010, 2, .	0.1	1
393	Effects of Different Levels of Variability and Pressure Support Ventilation on Lung Function in Patients With Mild–Moderate Acute Respiratory Distress Syndrome. Frontiers in Physiology, 2021, 12, 725738.	1.3	1
394	Testosterone Therapy and Diaphragm Performance in a Male Patient with COVID-19: A Case Report. Diagnostics, 2022, 12, 535.	1.3	1
395	Prone positioning in COVID-19 ARDS: more pros than cons. Jornal Brasileiro De Pneumologia, 2022, 48, e20220065.	0.4	1
396	Respiratory mechanics after chronic diethylcarbamazine. Respiration Physiology, 1997, 108, 73-77.	2.8	0

#	Article	IF	CITATIONS
397	Stem cells and respiratory diseases. Brazilian Archives of Biology and Technology, 2008, 51, 23-30.	0.5	О
398	Respiratory And Systemic Effects Of LASSBio596 Associated Or Not With Surfactant In An Experimental Model Of Sepsis-induced Acute Lung Injury. , 2010, , .		0
399	Dissociative Effect Of Gender On Airway Hyperresponsiveness And Remodeling In Experimental Chronic Allergic Asthma. , 2010, , .		0
400	The Impact Of Thymulin Gene Therapy On Airway And Lung Parenchyma Remodeling In A Murine Model Of Chronic Allergic Asthma. , 2010, , .		0
401	EFFECT OF C-JUN NH2-TERMINAL KINASE (JNK) INHIBITOR SP600125 ON EXPERIMENTAL SILICOSIS IN MICE. , 2010, , .		0
402	Bone Marrow-derived Mononuclear Cell Therapy Improved Lung Mechanics And Histology In A Murine Model Of Emphysema. , 2010, , .		0
403	Surgical Lung Biopsy In Patients With Swine Influenza Type A/H1N1 Severe Acute Respiratory Failure: Morphological And Ultrastructural Analysis. , 2010, , .		0
404	Airway And Lung Parenchyma Remodeling In An Experimental Model Of Chronic Allergic Asthma In Newly Weaned Mice. , 2010, , .		0
405	The Role Of BCG Vaccine On Airway And Lung Parenchyma Remodeling In A Murine Model Of Chronic Allergic Inflammation. , 2010, , .		0
406	Bone Marrow Mesenchymal Stem Cells Therapy In Murine Models Of Pulmonary And Extrapulmonary Acute Lung Injury: Attenuation Of Collagen Fiber Deposition. , 2011, , .		0
407	Frequency Of Time-Cycled Control Breaths During Biphasic Positive Airway Pressure Modifies The Expression Of Lung Inflammatory And Fibrogenic Mediators In Pulmonary And Extrapulmonary Acute Lung Injury. , 2011, , .		О
408	Quantification And Cell Characterization Of Bone Marrow Cells In Experimental Pulmonary And Extrapulmonary Acute Lung Injury. , 2011, , .		0
409	Effects Of Different Tidal Volumes On Lung And Distal Organs In Models Of Pulmonary And Extrapulmonary Acute Lung Injury Associated With Intra-Abdominal Hypertension. , 2011, , .		0
410	Risk Factors For Extubation Failure In Intensive Care Unit Patients. , 2011, , .		0
411	Effects Of RHO Kinase Inhibition On Airway And Lung Tissue Mechanics In Animals With Chronic Allergic Inflammation. , 2011, , .		0
412	Intratracheal Versus Intravenous Bone Marrow Mononuclear Cell Therapy In Experimental Chronic Allergic Asthma: Which Is The Best Administration Route?. , 2011, , .		0
413	Lung Resident Stem Cells. , 2013, , 105-122.		0
414	Mesenchymal Stromal Cell-Based Therapies for Lung Diseases and Critical Illnesses. , 2015, , 399-433.		0

#	Article	IF	CITATIONS
415	In Reply. Anesthesiology, 2016, 124, 974-975.	1.3	Ο
416	Reply to. European Journal of Anaesthesiology, 2016, 33, 300-301.	0.7	0
417	Preparation of Extracellular Vesicles from Mesenchymal Stem Cells. Stem Cells in Clinical Applications, 2018, , 37-51.	0.4	0
418	Safety and efficacy profile of cryopreserved mesenchymal stem cells for the treatment of acute respiratory distress syndrome Cytotherapy, 2019, 21, e12.	0.3	0
419	Extracellular matrix components remodeling and lung function parameters in experimental emphysema and allergic asthma: Differences among the mouse strains. Drug Discovery Today: Disease Models, 2019, 29-30, 27-34.	1.2	0
420	Protective Therapy with Mitochondria Isolated from Mesenchymal Stromal Cells in a Sepsis Model. Cytotherapy, 2020, 22, S78-S79.	0.3	0
421	Inflammatory microenvironment in ARDS patients polarize clinically utilized MSCs towards a pro-inflammatory MSC phenotype. Cytotherapy, 2020, 22, S99.	0.3	0
422	Effects of Fluid Strategy at Higher and Lower Peep on Lung and Kidney Injury in Experimental Acute Respiratory Distress Syndrome. , 2020, , .		0
423	The Adult and Neonate Mouse Decellularized Lung Matrix: Scaffold Composition, Lung Mechanics and Regenerative Potential. , 2020, , .		0
424	The Trojan, miR193b-5p, in Virus-Induced Acute Respiratory Distress Syndrome (ARDS). , 2020, , .		0
425	Systemic Infusion of Propofol Better Immunomodulates the Lungs Than Dexmedetomidine in Experimental Focal Ischemic Stroke. , 2020, , .		0
426	Pressure-Support Compared to Pressure-Controlled Ventilation Improves Cardiorespiratory Function and Mitigates Brain Endothelial Cell Damage in Experimental Acute Ischemic Stroke. , 2020, , .		0
427	The authors reply. Critical Care Medicine, 2020, 48, e634-e635.	0.4	0
428	MESENCHYMAL STROMAL CELLS PROTECT AGAINST VASCULAR DAMAGE AND DEPRESSION-LIKE BEHAVIOR IN MICE SURVIVING CEREBRAL MALARIA. Cytotherapy, 2021, 23, 25.	0.3	0
429	Mesenchymal stromal cells protect the blood-brain barrier and prevent cognitive and behavioral impairments in infectious disease-associated encephalopathies. Cytotherapy, 2021, 23, S39-S40.	0.3	0
430	Therapeutic potential of extracellular vesicles secreted by adipose tissue-derived mesenchymal stromal cells in acute kidney injury induced by sepsis. Cytotherapy, 2021, 23, S114.	0.3	0
431	Mitochondria isolated from mesenchymal stromal cells reduce lung and distal organ injury in experimental sepsis. Cytotherapy, 2021, 23, S46.	0.3	0
432	Challenges of Cell Therapy for Lung Diseases and Critical Illnesses. Pancreatic Islet Biology, 2015, , 93-112.	0.1	0

#	Article	IF	CITATIONS
433	Effects of bone-marrow derived mononuclear cells from silicotic and healthy donors in experimental silicosis. , 2015, , .		0
434	Effects of spontaneous breathing with different PEEP levels on ventilator-induced lung injury in mild ARDS. , 2017, , .		0
435	FIZZ1: a new pathway in silica-induced inflammatory mediators and pulmonary fibrosis. , 2018, , .		0
436	Inflammatory microenvironment in both healthy controls and ARDS patients polarize clinically utilized MSCs towards a pro-inflammatory MSC phenotype. , 2020, , .		0
437	Stem cell therapy in acute respiratory distress syndrome. Revista Brasileira De Terapia Intensiva, 2009, 21, 51-7.	0.1	0
438	Controversies involving hypercapnic acidosis in acute respiratory distress syndrome. Revista Brasileira De Terapia Intensiva, 2009, 21, 404-15.	0.1	0
439	Editorial: Lung Imaging in Respiratory Failure. Frontiers in Physiology, 2022, 13, 862647.	1.3	Ο