Joanne Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/785709/publications.pdf Version: 2024-02-01

IOANNE WANC

#	Article	IF	CITATIONS
1	Multiple Transport Mechanisms Involved in the Intestinal Absorption of Metformin: Impact on the Nonlinear Absorption Kinetics. Journal of Pharmaceutical Sciences, 2022, 111, 1531-1541.	3.3	8
2	Live Tissue Imaging Reveals Distinct Transcellular Pathways for Organic Cations and Anions at the Blood-Cerebrospinal Fluid Barrier. Molecular Pharmacology, 2022, 101, 334-342.	2.3	4
3	Clinical Applications and the Roles of Transporters in Disposition, Tumor Targeting, and Tissue Toxicity of <i>meta</i> -lodobenzylguanidine. Drug Metabolism and Disposition, 2022, 50, 1218-1227.	3.3	6
4	Evaluation of Blood-CSF Barrier Transport by Quantitative Real Time Fluorescence Microscopy. Pharmaceutical Research, 2022, 39, 1469-1480.	3.5	2
5	Targeting OCT3 attenuates doxorubicin-induced cardiac injury. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	33
6	Brain Plasma Membrane Monoamine Transporter in Health and Disease. Handbook of Experimental Pharmacology, 2021, 266, 253-280.	1.8	10
7	Choroid Plexus and Drug Removal Mechanisms. AAPS Journal, 2021, 23, 61.	4.4	14
8	Effects of Pregnancy on the Pharmacokinetics of Metformin. Drug Metabolism and Disposition, 2020, 48, 264-271.	3.3	31
9	Deletion of murine <i>slc29a4</i> modifies vascular responses to adenosine and 5â€hydroxytryptamine in a sexually dimorphic manner. Physiological Reports, 2020, 8, e14395.	1.7	11
10	Renal secretion of hydrochlorothiazide involves organic anion transporter 1/3, organic cation transporter 2, and multidrug and toxin extrusion protein 2-K. American Journal of Physiology - Renal Physiology, 2019, 317, F805-F814.	2.7	10
11	Transport of Bupropion and its Metabolites by the Model CHO and HEK293 Cell Lines. Drug Metabolism Letters, 2019, 13, 25-36.	0.8	6
12	Effect of Pregnancy on Paroxetine-Induced Adiposity and Glucose Intolerance in Mice. Journal of Pharmacology and Experimental Therapeutics, 2019, 371, 113-120.	2.5	4
13	Drug Transporters in Xenobiotic Disposition and Pharmacokinetic Prediction. Drug Metabolism and Disposition, 2018, 46, 561-566.	3.3	30
14	Disposition of Methamphetamine and Major Metabolites in Mice: Role of Organic Cation Transporter 3 in Tissue-Selective Accumulation of <i>Para</i> -Hydroxymethamphetamine. Drug Metabolism and Disposition, 2018, 46, 1277-1284.	3.3	12
15	Organic Cation Transporter 3 Facilitates Fetal Exposure to Metformin during Pregnancy. Molecular Pharmacology, 2018, 94, 1125-1131.	2.3	37
16	Interaction and Transport of Methamphetamine and its Primary Metabolites by Organic Cation and Multidrug and Toxin Extrusion Transporters. Drug Metabolism and Disposition, 2017, 45, 770-778.	3.3	22
17	Serotonin transporter deficiency drives estrogen-dependent obesity and glucose intolerance. Scientific Reports, 2017, 7, 1137.	3.3	44
18	Potent inhibition of human organic cation transporter 2 (hOCT2) by β-carboline alkaloids. Xenobiotica, 2017, 47, 1112-1120.	1.1	4

JOANNE WANG

#	Article	IF	CITATIONS
19	Interspecies comparison of the functional characteristics of plasma membrane monoamine transporter (PMAT) between human, rat and mouse. Journal of Chemical Neuroanatomy, 2017, 83-84, 99-106.	2.1	14
20	Impact of Substrate-Dependent Inhibition on Renal Organic Cation Transporters hOCT2 and hMATE1/2-K-Mediated Drug Transport and Intracellular Accumulation. Journal of Pharmacology and Experimental Therapeutics, 2016, 359, 401-410.	2.5	36
21	Polyspecific organic cation transporters and their impact on drug intracellular levels and pharmacodynamics. Pharmacological Research, 2016, 111, 237-246.	7.1	77
22	Renal drug transporters and their significance in drug–drug interactions. Acta Pharmaceutica Sinica B, 2016, 6, 363-373.	12.0	134
23	Involvement of organic cation transporter 3 (Oct3/Slc22a3) in the bioavailability and pharmacokinetics of antidiabetic metformin in mice. Drug Metabolism and Pharmacokinetics, 2016, 31, 385-388.	2.2	26
24	Atenolol Renal Secretion Is Mediated by Human Organic Cation Transporter 2 and Multidrug and Toxin Extrusion Proteins. Drug Metabolism and Disposition, 2015, 43, 1872-1881.	3.3	45
25	Potent and Selective Inhibition of Plasma Membrane Monoamine Transporter by HIV Protease Inhibitors. Drug Metabolism and Disposition, 2015, 43, 1773-1780.	3.3	50
26	Autism spectrum disorder associated with low serotonin in CSF and mutations in the SLC29A4 plasma membrane monoamine transporter (PMAT) gene. Molecular Autism, 2014, 5, 43.	4.9	59
27	Taste of a Pill. Journal of Biological Chemistry, 2014, 289, 27055-27064.	3.4	68
28	Recipient Pretransplant Inosine Monophosphate Dehydrogenase Activity in Nonmyeloablative Hematopoietic Cell Transplantation. Biology of Blood and Marrow Transplantation, 2014, 20, 1544-1552.	2.0	7
29	Impaired Monoamine and Organic Cation Uptake in Choroid Plexus in Mice with Targeted Disruption of the Plasma Membrane Monoamine Transporter (Slc29a4) Gene. Journal of Biological Chemistry, 2013, 288, 3535-3544.	3.4	55
30	Effect of Gestational Age on mRNA and Protein Expression of Polyspecific Organic Cation Transporters during Pregnancy. Drug Metabolism and Disposition, 2013, 41, 2225-2232.	3.3	53
31	The Organic Cation Transporter 3 (OCT3) Facilitates Fetal Disposition of Metformin during Pregnancy. FASEB Journal, 2013, 27, 891.5.	0.5	0
32	Electrophysiological Characterization of the Polyspecific Organic Cation Transporter Plasma Membrane Monoamine Transporter. Drug Metabolism and Disposition, 2012, 40, 1138-1143.	3.3	31
33	Expression Profiling of Solute Carrier Gene Families at the Blood-CSF Barrier. Frontiers in Pharmacology, 2012, 3, 154.	3.5	38
34	Residue lle89 in human plasma membrane monoamine transporter influences its organic cation transport activity and sensitivity to inhibition by dilazep. Biochemical Pharmacology, 2012, 84, 383-390.	4.4	8
35	Molecular Analysis and Structure-Activity Relationship Modeling of the Substrate/Inhibitor Interaction Site of Plasma Membrane Monoamine Transporter. Journal of Pharmacology and Experimental Therapeutics, 2011, 339, 376-385.	2.5	19
36	Selective Transport of Monoamine Neurotransmitters by Human Plasma Membrane Monoamine Transporter and Organic Cation Transporter 3. Journal of Pharmacology and Experimental Therapeutics, 2010, 335, 743-753.	2.5	179

JOANNE WANG

#	Article	IF	CITATIONS
37	Adenosine Transport by Plasma Membrane Monoamine Transporter: Reinvestigation and Comparison with Organic Cations. Drug Metabolism and Disposition, 2010, 38, 1798-1805.	3.3	36
38	Tyrosine 112 Is Essential for Organic Cation Transport by the Plasma Membrane Monoamine Transporter. Biochemistry, 2010, 49, 7839-7846.	2.5	11
39	Expression Profiling of the Solute Carrier Gene Family in the Mouse Brain. Journal of Pharmacology and Experimental Therapeutics, 2009, 329, 558-570.	2.5	99
40	A novel phenotypic method to determine fludarabine triphosphate accumulation in T-lymphocytes from hematopoietic cell transplantation patients. Cancer Chemotherapy and Pharmacology, 2009, 63, 391-401.	2.3	19
41	Intracellular disposition of fludarabine triphosphate in human natural killer cells. Cancer Chemotherapy and Pharmacology, 2009, 63, 959-964.	2.3	7
42	Imatinib inhibition of fludarabine uptake in T-lymphocytes. Cancer Chemotherapy and Pharmacology, 2008, 62, 735-739.	2.3	15
43	Molecular Determinants of Substrate Selectivity of a Novel Organic Cation Transporter (PMAT) in the SLC29 Family. Journal of Biological Chemistry, 2007, 282, 3188-3195.	3.4	40
44	Membrane localization and pH-dependent transport of a newly cloned organic cation transporter (PMAT) in kidney cells. American Journal of Physiology - Renal Physiology, 2007, 292, F682-F690.	2.7	73
45	Metformin Transport by a Newly Cloned Proton-Stimulated Organic Cation Transporter (Plasma) Tj ETQq1 1 0.784 2007, 35, 1956-1962.	1314 rgBT 3.3	/Overlock 212
46	Evidence for significant contribution of a newly identified monoamine transporter (PMAT) to serotonin uptake in the human brain. Biochemical Pharmacology, 2007, 73, 147-154.	4.4	62
47	Drugdrug interactions involving membrane transporters in the human kidney. Expert Opinion on Drug Metabolism and Toxicology, 2006, 2, 505-532.	3.3	71
48	INTERACTIONS OF AMOXICILLIN AND CEFACLOR WITH HUMAN RENAL ORGANIC ANION AND PEPTIDE TRANSPORTERS. Drug Metabolism and Disposition, 2006, 34, 547-555.	3.3	57
49	A highly sensitive high-performance liquid chromatography–mass spectrometry method for quantification of fludarabine triphosphate in leukemic cells. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2005, 820, 243-250.	2.3	15
50	Interaction of Organic Cations with a Newly Identified Plasma Membrane Monoamine Transporter. Molecular Pharmacology, 2005, 68, 1397-1407.	2.3	182
51	Identification and Characterization of a Novel Monoamine Transporter in the Human Brain. Journal of Biological Chemistry, 2004, 279, 50042-50049.	3.4	240
52	Hypoxanthine Transport in Human Glioblastoma Cells and Effect on Cell Susceptibility to Methotrexate. Pharmaceutical Research, 2003, 20, 1804-1811.	3.5	4
53	Nucleoside Transporters: CNTs and ENTs. , 0, , 171-200.		0