Wayne A Hendrickson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7857075/publications.pdf

Version: 2024-02-01

126907 123424 61 11,205 33 citations h-index papers

g-index 68 68 68 10798 docs citations times ranked citing authors all docs

61

#	Article	IF	CITATIONS
1	Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature, 1998 , 393 , 648 - 659 .	27.8	2,788
2	The antigenic structure of the HIV gp120 envelope glycoprotein. Nature, 1998, 393, 705-711.	27.8	1,152
3	Crystal structure of the tyrosine kinase domain of the human insulin receptor. Nature, 1994, 372, 746-754.	27.8	1,105
4	Structure of a C-type mannose-binding protein complexed with an oligosaccharide. Nature, 1992, 360, 127-134.	27.8	953
5	Crystal structure of an HIV-binding recombinant fragment of human CD4. Nature, 1990, 348, 419-426.	27.8	599
6	The reactivity of anti-peptide antibodies is a function of the atomic mobility of sites in a protein. Nature, 1984, 312, 127-134.	27.8	505
7	Structure of a heparin-linked biologically active dimer of fibroblast growth factor. Nature, 1998, 393, 812-817.	27.8	354
8	Structure of a mammalian ryanodine receptor. Nature, 2015, 517, 44-49.	27.8	350
9	Structural Basis for Gating and Activation of RyR1. Cell, 2016, 167, 145-157.e17.	28.9	301
10	Dimeric association and segmental variability in the structure of human CD4. Nature, 1997, 387, 527-530.	27.8	259
11	Insights into Hsp70 Chaperone Activity from a Crystal Structure of the Yeast Hsp110 Sse1. Cell, 2007, 131, 106-120.	28.9	234
12	Allosteric opening of the polypeptide-binding site when an Hsp70 binds ATP. Nature Structural and Molecular Biology, 2013, 20, 900-907.	8.2	221
13	2017 publication guidelines for structural modelling of small-angle scattering data from biomolecules in solution: an update. Acta Crystallographica Section D: Structural Biology, 2017, 73, 710-728.	2.3	205
14	Structure of the UmuD′ protein and its regulation in response to DNA damage. Nature, 1996, 380, 727-730.	27.8	166
15	Structure and activity of tryptophan-rich TSPO proteins. Science, 2015, 347, 551-555.	12.6	149
16	Structure and selectivity in bestrophin ion channels. Science, 2014, 346, 355-359.	12.6	133
17	Structure and activity of lipid bilayer within a membrane-protein transporter. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12985-12990.	7.1	119
18	Crystallographic structure analysis of lamprey hemoglobin from anomalous dispersion of synchrotron radiation. Proteins: Structure, Function and Bioinformatics, 1988, 4, 77-88.	2.6	111

#	Article	IF	CITATIONS
19	Exploration of disorder in protein structures by X-ray restrained molecular dynamics. Proteins: Structure, Function and Bioinformatics, 1991, 10, 340-358.	2.6	105
20	Structure of the STRA6 receptor for retinol uptake. Science, 2016, 353, .	12.6	103
21	Anomalous diffraction in crystallographic phase evaluation. Quarterly Reviews of Biophysics, 2014, 47, 49-93.	5.7	92
22	Structure-Based Design, Synthesis and Validation of CD4-Mimetic Small Molecule Inhibitors of HIV-1 Entry: Conversion of a Viral Entry Agonist to an Antagonist. Accounts of Chemical Research, 2014, 47, 1228-1237.	15.6	88
23	Crystallization of a fragment of human fibronectin: Introduction of methionine by site-directed mutagenesis to allow phasing via selenomethionine. Proteins: Structure, Function and Bioinformatics, 1994, 19, 48-54.	2.6	86
24	Structural basis for a pH-sensitive calcium leak across membranes. Science, 2014, 344, 1131-1135.	12.6	86
25	Small-Molecule CD4-Mimics: Structure-Based Optimization of HIV-1 Entry Inhibition. ACS Medicinal Chemistry Letters, 2016, 7, 330-334.	2.8	86
26	Structural insights into mis-regulation of protein kinase A in human tumors. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1374-1379.	7.1	78
27	Structure of human GABAB receptor in an inactive state. Nature, 2020, 584, 304-309.	27.8	59
28	Quantification of tertiary structural conservation despite primary sequence drift in the globin fold. Protein Science, 1994, 3, 1706-1711.	7.6	52
29	Atomic-level analysis of membrane-protein structure. Nature Structural and Molecular Biology, 2016, 23, 464-467.	8.2	50
30	Structural basis for phosphatidylinositol-phosphate biosynthesis. Nature Communications, 2015, 6, 8505.	12.8	43
31	The protein-folding problem: Not yet solved. Science, 2022, 375, 507-507.	12.6	43
32	Structural and Mechanistic Insights into the Latrophilin3-FLRT3 Complex that Mediates Glutamatergic Synapse Development. Structure, 2015, 23, 1665-1677.	3.3	42
33	Gating movements and ion permeation in HCN4 pacemaker channels. Molecular Cell, 2021, 81, 2929-2943.e6.	9.7	41
34	Crystallographic phasing from weak anomalous signals. Current Opinion in Structural Biology, 2015, 34, 99-107.	5.7	39
35	Preassociated apocalmodulin mediates Ca $<$ sup $>$ 2+ $<$ /sup $>$ -dependent sensitization of activation and inactivation of TMEM16A/16B Ca $<$ sup $>$ 2+ $<$ /sup $>$ -gated Cl $<$ sup $>$ 2 $^{\circ}$ 2 $^{\circ}$ 4/sup $>$ channels. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 18213-18218.	7.1	36
36	Structure and activity of SLAC1 channels for stomatal signaling in leaves. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	35

3

#	Article	IF	Citations
37	Sample manipulation and data assembly for robust microcrystal synchrotron crystallography. IUCrJ, 2018, 5, 238-246.	2.2	30
38	Structural basis for activity of TRIC counter-ion channels in calcium release. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4238-4243.	7.1	26
39	Structures of the colossal RyR1 calcium release channel. Current Opinion in Structural Biology, 2016, 39, 144-152.	5.7	25
40	Structural and functional characterization of the bestrophin-2 anion channel. Nature Structural and Molecular Biology, 2020, 27, 382-391.	8.2	25
41	Evolution of diffraction methods for solving crystal structures. Acta Crystallographica Section A: Foundations and Advances, 2013, 69, 51-59.	0.3	23
42	Symmetric activation and modulation of the human calcium-sensing receptor. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	23
43	Single-channel recordings of RyR1 at microsecond resolution in CMOS-suspended membranes. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1789-E1798.	7.1	21
44	Conformational equilibria in allosteric control of Hsp70 chaperones. Molecular Cell, 2021, 81, 3919-3933.e7.	9.7	16
45	Exchange We Can Believe in. Structure, 2008, 16, 1153-1155.	3.3	15
46	Contemporary Use of Anomalous Diffraction in Biomolecular Structure Analysis. Methods in Molecular Biology, 2017, 1607, 377-399.	0.9	15
47	Crystallographic analysis of the pHâ€dependent binding of iminobiotin by streptavidin. Protein Science, 1997, 6, 1338-1342.	7.6	14
48	Transduction of biochemical signals across cell membranes. Quarterly Reviews of Biophysics, 2005, 38, 321-330.	5.7	14
49	Synchrotron microcrystal native-SAD phasing at a low energy. IUCrJ, 2019, 6, 532-542.	2.2	14
50	Structural basis for conductance through TRIC cation channels. Nature Communications, 2017, 8, 15103.	12.8	12
51	Structure of the Regulatory Cytosolic Domain of a Eukaryotic Potassium-Chloride Cotransporter. Structure, 2020, 28, 1051-1060.e4.	3.3	11
52	Structure-based analysis of CysZ-mediated cellular uptake of sulfate. ELife, 2018, 7, .	6.0	10
53	Identification of gp120 Residue His105 as a Novel Target for HIV-1 Neutralization by Small-Molecule CD4-Mimics. ACS Medicinal Chemistry Letters, 2021, 12, 1824-1831.	2.8	8
54	Structures and gating mechanisms of human bestrophin anion channels. Nature Communications, 2022, 13, .	12.8	8

#	Article	IF	CITATIONS
55	Theory of Allosteric Regulation in Hsp70 Molecular Chaperones. QRB Discovery, 2020, 1, .	1.6	7
56	Production of crystallizable fragments of membrane proteins. Journal of Bioenergetics and Biomembranes, 1996, 28, 35-40.	2.3	6
57	PyMDA: microcrystal data assembly using Python. Journal of Applied Crystallography, 2020, 53, 277-281.	4.5	6
58	Characterization of crystals of the thermostable DNA polymerase I fromthermus aquaticus. Proteins: Structure, Function and Bioinformatics, 1995, 23, 111-114.	2.6	4
59	Intermediates in allosteric equilibria of DnaK–ATP interactions with substrate peptides. Acta Crystallographica Section D: Structural Biology, 2021, 77, 606-617.	2.3	2
60	Production and crystallization of a selenomethionyl variant of UmuD′, anEcherichia coliSOS response protein. Proteins: Structure, Function and Bioinformatics, 1996, 25, 506-509.	2.6	1
61	Cysâ€loop ion channels and Gâ€protein coupled receptors as targets for structureâ€inspired drug discovery. FASEB Journal, 2009, 23, 92.3.	0.5	0