Mark Peifer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7856993/publications.pdf

Version: 2024-02-01

38742 38395 9,848 102 50 95 citations h-index g-index papers 116 116 116 8493 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Armadillo Coactivates Transcription Driven by the Product of the Drosophila Segment Polarity Gene dTCF. Cell, 1997, 88, 789-799.	28.9	1,124
2	Drosophila Tcf and Groucho interact to repress Wingless signalling activity. Nature, 1998, 395, 604-608.	27.8	654
3	The segment polarity gene armadillo encodes a functionally modular protein that is the Drosophila homolog of human plakoglobin. Cell, 1990, 63, 1167-1178.	28.9	471
4	Cadherins in embryonic and neural morphogenesis. Nature Reviews Molecular Cell Biology, 2000, 1, 91-100.	37.0	425
5	The positioning and segregation of apical cues during epithelial polarity establishment in Drosophila. Journal of Cell Biology, 2005, 170, 813-823.	5.2	267
6	Wnt Signaling from Development to Disease: Insights from Model Systems. Cold Spring Harbor Perspectives in Biology, 2009, 1, a002881-a002881.	5 . 5	267
7	Adherens junction-dependent and -independent steps in the establishment of epithelial cell polarity in Drosophila. Journal of Cell Biology, 2004, 167, 135-147.	5.2	247
8	Phosphorylation of the Drosophila Adherens Junction Protein Armadillo: Roles for Wingless Signal and Zeste-white 3 Kinase. Developmental Biology, 1994, 166, 543-556.	2.0	236
9	The <i>Drosophila</i> afadin homologue Canoe regulates linkage of the actin cytoskeleton to adherens junctions during apical constriction. Journal of Cell Biology, 2009, 186, 57-73.	5.2	233
10	A role for a novel centrosome cycle in asymmetric cell division. Journal of Cell Biology, 2007, 177, 13-20.	5.2	231
11	The SCFSlimb ubiquitin ligase regulates Plk4/Sak levels to block centriole reduplication. Journal of Cell Biology, 2009, 184, 225-239.	5.2	221
12	Drosophila Apc2 Is a Cytoskeletally-Associated Protein That Regulates Wingless Signaling in the Embryonic Epidermis. Journal of Cell Biology, 1999, 146, 1303-1318.	5.2	183
13	Decisions, decisions: \hat{l}^2 -catenin chooses between adhesion and transcription. Trends in Cell Biology, 2005, 15, 234-237.	7.9	176
14	Can 1000 Reviews Be Wrong? Actin, α-Catenin, and Adherens Junctions. Cell, 2005, 123, 769-772.	28.9	168
15	Puckered, a Drosophila MAPK phosphatase, ensures cell viability by antagonizing JNK-induced apoptosis. Development (Cambridge), 2005, 132, 3935-3946.	2.5	161
16	Remodeling the zonula adherens in response to tension and the role of afadin in this response. Journal of Cell Biology, 2016, 213, 243-260.	5.2	157
17	Drosophila APC2 and Armadillo participate in tethering mitotic spindles to cortical actin. Nature Cell Biology, 2001, 3, 933-938.	10.3	156
18	A contractile actomyosin network linked to adherens junctions by Canoe/afadin helps drive convergent extension. Molecular Biology of the Cell, 2011, 22, 2491-2508.	2.1	151

#	Article	IF	CITATIONS
19	Wnt/Beta-Catenin Signaling Regulation and a Role for Biomolecular Condensates. Developmental Cell, 2019, 48, 429-444.	7.0	143
20	Abelson kinase regulates epithelial morphogenesis in Drosophila. Journal of Cell Biology, 2001, 155, 1185-1198.	5.2	135
21	Ena/VASP Enabled is a highly processive actin polymerase tailored to self-assemble parallel-bundled F-actin networks with Fascin. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4121-4126.	7.1	132
22	Diaphanous regulates myosin and adherens junctions to control cell contractility and protrusive behavior during morphogenesis. Development (Cambridge), 2008, 135, 1005-1018.	2.5	127
23	A Multicomponent Assembly Pathway Contributes to the Formation of Acentrosomal Microtubule Arrays in Interphase <i>Drosophila</i> Cells. Molecular Biology of the Cell, 2008, 19, 3163-3178.	2.1	127
24	Drosophila p120catenin plays a supporting role in cell adhesion but is not an essential adherens junction component. Journal of Cell Biology, 2003, 160, 433-449.	5.2	126
25	Abelson kinase (Abl) and RhoGEF2 regulate actin organization during cell constriction in Drosophila. Development (Cambridge), 2007, 134, 567-578.	2.5	126
26	Evidence for Functional Differentiation among <i>Drosophila</i> Septins in Cytokinesis and Cellularization. Molecular Biology of the Cell, 2000, 11, 3123-3135.	2.1	122
27	Enabled plays key roles in embryonic epithelial morphogenesis in Drosophila. Development (Cambridge), 2007, 134, 2027-2039.	2.5	116
28	Roles of Armadillo, a Drosophila catenin, during central nervous system development. Current Biology, 1998, 8, 622-633.	3.9	115
29	Regulation of Epithelial Morphogenesis by the G Protein–Coupled Receptor Mist and Its Ligand Fog. Science Signaling, 2013, 6, ra98.	3.6	112
30	Scribble: A master scaffold in polarity, adhesion, synaptogenesis, and proliferation. Journal of Cell Biology, 2019, 218, 742-756.	5.2	111
31	aPKC Controls Microtubule Organization to Balance Adherens Junction Symmetry and Planar Polarity during Development. Developmental Cell, 2007, 12, 727-738.	7.0	105
32	Balancing different types of actin polymerization at distinct sites. Journal of Cell Biology, 2003, 163, 1267-1279.	5.2	104
33	CellGeo: A computational platform for the analysis of shape changes in cells with complex geometries. Journal of Cell Biology, 2014, 204, 443-460.	5.2	93
34	Rab11 Helps Maintain Apical Crumbs and Adherens Junctions in the Drosophila Embryonic Ectoderm. PLoS ONE, 2009, 4, e7634.	2.5	92
35	Traffic control. Journal of Cell Biology, 2003, 163, 437-440.	5 . 2	91
36	Drosophila α-Catenin and E-cadherin Bind to Distinct Regions of Drosophila Armadillo. Journal of Biological Chemistry, 1996, 271, 32411-32420.	3.4	90

3

#	Article	IF	Citations
37	Deconstructing the ĀŸcatenin destruction complex: mechanistic roles for the tumor suppressor APC in regulating Wnt signaling. Molecular Biology of the Cell, 2011, 22, 1845-1863.	2.1	85
38	A novel GSK3-regulated APC: Axin interaction regulates Wnt signaling by driving a catalytic cycle of efficient \hat{l}^2 catenin destruction. ELife, 2015, 4, e08022.	6.0	83
39	Roles of the C Terminus of Armadillo in Wingless Signaling in Drosophila. Genetics, 1999, 153, 319-332.	2.9	76
40	Testing hypotheses for the functions of APC family proteins using null and truncation alleles in Drosophila. Development (Cambridge), 2006, 133, 2407-2418.	2.5	74
41	Drosophila APC2 and APC1 Play Overlapping Roles in Wingless Signaling in the Embryo and Imaginal Discs. Developmental Biology, 2002, 250, 91-100.	2.0	73
42	Rap1 and Canoe/afadin are essential for establishment of apical–basal polarity in the <i>Drosophila</i> embryo. Molecular Biology of the Cell, 2013, 24, 945-963.	2.1	72
43	Drosophila APC2 and APC1 Have Overlapping Roles in the Larval Brain Despite Their Distinct Intracellular Localizations. Developmental Biology, 2002, 250, 71-90.	2.0	66
44	Cytoskeletal dynamics and cell signaling during planar polarity establishment in the Drosophila embryonic denticle. Journal of Cell Science, 2006, 119, 403-415.	2.0	65
45	Exploring the Roles of Diaphanous and Enabled Activity in Shaping the Balance between Filopodia and Lamellipodia. Molecular Biology of the Cell, 2009, 20, 5138-5155.	2.1	64
46	LITE microscopy: Tilted light-sheet excitation of model organisms offers high resolution and low photobleaching. Journal of Cell Biology, 2018, 217, 1869-1882.	5.2	64
47	Interphase centrosome organization by the PLP-Cnn scaffold is required for centrosome function. Journal of Cell Biology, 2015, 210, 79-97.	5.2	63
48	Wnt signaling: Moving in a new direction. Current Biology, 2000, 10, R562-R564.	3.9	62
49	Acentrosomal Drosophila Epithelial Cells Exhibit Abnormal Cell Division, Leading to Cell Death and Compensatory Proliferation. Developmental Cell, 2014, 30, 731-745.	7.0	62
50	The single <i>Drosophila </i> ZO-1 protein Polychaetoid regulates embryonic morphogenesis in coordination with Canoe/afadin and Enabled. Molecular Biology of the Cell, 2011, 22, 2010-2030.	2.1	61
51	Enabled and Capping protein play important roles in shaping cell behavior during Drosophila oogenesis. Developmental Biology, 2009, 333, 90-107.	2.0	60
52	Enabled Negatively Regulates Diaphanous-Driven Actin Dynamics InÂVitro and InÂVivo. Developmental Cell, 2014, 28, 394-408.	7.0	58
53	Original CIN: reviewing roles for APC in chromosome instability. Journal of Cell Biology, 2008, 181, 719-726.	5.2	56
54	The $\langle i \rangle$ Drosophila $\langle i \rangle$ Afadin and ZO-1 homologues Canoe and Polychaetoid act in parallel to maintain epithelial integrity when challenged by adherens junction remodeling. Molecular Biology of the Cell, 2019, 30, 1938-1960.	2.1	53

#	Article	IF	CITATIONS
55	Cadherin Sequences That Inhibit \hat{l}^2 -Catenin Signaling: A Study in Yeast and Mammalian Cells. Molecular Biology of the Cell, 2001, 12, 1177-1188.	2.1	52
56	The Ballet of Morphogenesis. Cell, 2002, 109, 271-274.	28.9	51
57	Supramolecular assembly of the beta-catenin destruction complex and the effect of Wnt signaling on its localization, molecular size, and activity in vivo. PLoS Genetics, 2018, 14, e1007339.	3.5	50
58	Rho1 regulates Drosophila adherens junctions independently of p120ctn. Development (Cambridge), 2005, 132, 4819-4831.	2.5	48
59	Rap 1 acts via multiple mechanisms to position Canoe/Afadin and adherens junctions and mediate apical-basal polarity establishment. Development (Cambridge), 2018, 145, .	2.5	48
60	Orchestrating morphogenesis: building the body plan by cell shape changes and movements. Development (Cambridge), 2020, 147, .	2.5	48
61	A model system for cell adhesion and signal transduction in <i>Drosophila</i> . Development (Cambridge), 1993, 119, 163-176.	2.5	47
62	Talin Autoinhibition Is Required for Morphogenesis. Current Biology, 2013, 23, 1825-1833.	3.9	43
63	The Miraprep: A Protocol that Uses a Miniprep Kit and Provides Maxiprep Yields. PLoS ONE, 2016, 11, e0160509.	2.5	42
64	A Screen for Mutations That Suppress the Phenotype of <i>Drosophila armadillo</i> , the \hat{l}^2 -Catenin Homolog. Genetics, 2000, 155, 1725-1740.	2.9	41
65	Novel roles for APC family members and Wingless/Wnt signaling during Drosophila brain development. Developmental Biology, 2007, 305, 358-376.	2.0	38
66	Neither straight nor narrow. Nature, 1999, 400, 213-215.	27.8	36
67	The actin regulators Enabled and Diaphanous direct distinct protrusive behaviors in different tissues during Drosophila development. Molecular Biology of the Cell, 2014, 25, 3147-3165.	2.1	35
68	Centrosome and spindle assembly checkpoint loss leads to neural apoptosis and reduced brain size. Journal of Cell Biology, 2017, 216, 1255-1265.	5.2	34
69	Putting the model to the test: are APC proteins essential for neuronal polarity, axon outgrowth, and axon targeting?. Journal of Cell Biology, 2008, 183, 203-212.	5.2	30
70	Regulation of Wnt signaling by the tumor suppressor adenomatous polyposis coli does not require the ability to enter the nucleus or a particular cytoplasmic localization. Molecular Biology of the Cell, 2012, 23, 2041-2056.	2.1	28
71	Terminal Regions of Î ² -Catenin Come into View. Structure, 2008, 16, 336-338.	3.3	27
72	Reconstituting regulation of the canonical Wnt pathway by engineering a minimal \hat{l}^2 -catenin destruction machine. Molecular Biology of the Cell, 2017, 28, 41-53.	2.1	26

#	Article	IF	CITATIONS
73	Scribble and discs-large direct initial assembly and positioning of adherens junctions during establishment of apical-basal polarity. Development (Cambridge), 2019, 146, .	2.5	26
74	Using Bcr-Abl to Examine Mechanisms by Which Abl Kinase Regulates Morphogenesis in <i>Drosophila</i> . Molecular Biology of the Cell, 2008, 19, 378-393.	2.1	25
75	Teaching tumour suppressors new tricks. Nature Cell Biology, 2000, 2, E58-E60.	10.3	23
76	Multivalent interactions make adherens junction–cytoskeletal linkage robust during morphogenesis. Journal of Cell Biology, 2021, 220, .	5.2	21
77	APC2 and Axin promote mitotic fidelity by facilitating centrosome separation and cytoskeletal regulation. Development (Cambridge), 2013, 140, 4226-4236.	2.5	19
78	Abelson kinase acts as a robust, multifunctional scaffold in regulating embryonic morphogenesis. Molecular Biology of the Cell, 2016, 27, 2613-2631.	2.1	19
79	Defining Components of the ÄYcatenin Destruction Complex and Exploring Its Regulation and Mechanisms of Action during Development. PLoS ONE, 2012, 7, e31284.	2.5	18
80	Wnt regulation: exploring Axin-Disheveled interactions and defining mechanisms by which the SCF E3 ubiquitin ligase is recruited to the destruction complex. Molecular Biology of the Cell, 2020, 31, 992-1014.	2.1	15
81	Which way is up?. Nature, 2000, 403, 611-612.	27.8	14
82	The argument for diversifying the NIH grant portfolio. Molecular Biology of the Cell, 2017, 28, 2935-2940.	2.1	14
83	The product of the Drosophila melanogaster segment polarity gene armadillo is highly conserved in sequence and expression in the housefly Musca domestica. Journal of Molecular Evolution, 1993, 36, 224-233.	1.8	13
84	Birds of a feather flock together. Nature, 1998, 395, 324-325.	27.8	13
85	It takes more than two to tango: Dishevelled polymerization and Wnt signaling. Nature Structural and Molecular Biology, 2007, 14, 463-465.	8.2	13
86	Micron-scale supramolecular myosin arrays help mediate cytoskeletal assembly at mature adherens junctions. Journal of Cell Biology, 2022, 221, .	5.2	13
87	Centrosome Loss Triggers a Transcriptional Program To Counter Apoptosis-Induced Oxidative Stress. Genetics, 2019, 212, 187-211.	2.9	12
88	Cell Biology: A Tense but Good Day for Actin at Cell–Cell Junctions. Current Biology, 2014, 24, R688-R690.	3.9	11
89	Abelson kinase's intrinsically disordered region plays essential roles in protein function and protein stability. Cell Communication and Signaling, 2021, 19, 27.	6.5	10
90	Genetic and Bioinformatic Analysis of 41C and the 2R Heterochromatin of Drosophila melanogaster: A Window on the Heterochromatin-Euchromatin Junction. Genetics, 2004, 166, 807-822.	2.9	9

#	Article	IF	CITATIONS
91	Wnt Signaling: The Many Interfaces of Î ² -Catenin. Current Biology, 2012, 22, R137-R139.	3.9	8
92	Actin and Apical Constriction: Some (Re)-Assembly Required. Developmental Cell, 2015, 35, 662-664.	7.0	5
93	Call to restore NIH's cap on grant funding. Science, 2017, 357, 364-364.	12.6	5
94	The Crk adapter protein is essential for <i>Drosophila</i> embryogenesis, where it regulates multiple actin-dependent morphogenic events. Molecular Biology of the Cell, 2019, 30, 2399-2421.	2.1	5
95	Scribble and Dlg organize a protection racket to ensure apical–basal polarity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13188-13190.	7.1	5
96	Modulating apical–basal polarity by building and deconstructing a Yurt. Journal of Cell Biology, 2018, 217, 3772-3773.	5.2	2
97	Getting into shape: tissue tension drives oriented cell divisions duringÂorganogenesis. EMBO Journal, 2019, 38, .	7.8	2
98	<i>The Eighth Day of Creation</i> : looking back across 40 years to the birth of molecular biology and the roots of modern cell biology. Molecular Biology of the Cell, 2020, 31, 81-86.	2.1	1
99	Wingless can't fly so it hitches a ride with dynein. BioEssays, 2001, 23, 869-872.	2.5	0
100	What your PI forgot to tell you: why you actually might want a job running a research lab. Molecular Biology of the Cell, 2017, 28, 1724-1727.	2.1	0
101	Good Fences Make Good Neighbors: Crumbs Regulates Rho-Kinase Dynamics to Assemble a Tissue Boundary. Developmental Cell, 2020, 52, 255-256.	7.0	0
102	Getting the Word Out on Effective Ways to Teach: the Promoting Active Learning & Mentoring (PALM) Research Coordination Network. FASEB Journal, 2016, 30, 885.2.	0.5	0