Jesper J Madsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7856743/publications.pdf

Version: 2024-02-01

713332 623574 27 518 14 21 citations g-index h-index papers 28 28 28 714 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Acid activation mechanism of the influenza A M2 proton channel. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6955-E6964.	3.3	81
2	Binding of Serotonin to Lipid Membranes. Journal of the American Chemical Society, 2013, 135, 2164-2171.	6.6	65
3	Entropic forces drive clustering and spatial localization of influenza A M2 during viral budding. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115 , $E8595$ - $E8603$.	3.3	47
4	Headgroup Structure and Cation Binding in Phosphatidylserine Lipid Bilayers. Journal of Physical Chemistry B, 2019, 123, 9066-9079.	1.2	43
5	Interaction of neurotransmitters with a phospholipid bilayer: A molecular dynamics study. Chemistry and Physics of Lipids, 2014, 184, 7-17.	1.5	28
6	Factor VIII Interacts with the Endocytic Receptor Low-density Lipoprotein Receptor-related Protein 1 via an Extended Surface Comprising "Hot-Spot―Lysine Residues. Journal of Biological Chemistry, 2015, 290, 16463-16476.	1.6	27
7	Systematic Coarse-Grained Lipid Force Fields with Semiexplicit Solvation via Virtual Sites. Journal of Chemical Theory and Computation, 2019, 15, 2087-2100.	2.3	26
8	Cholesterol Alters the Orientation and Activity of the Influenza Virus M2 Amphipathic Helix in the Membrane. Journal of Physical Chemistry B, 2020, 124, 6738-6747.	1.2	22
9	Membrane Interaction of the Factor VIIIa Discoidin Domains in Atomistic Detail. Biochemistry, 2015, 54, 6123-6131.	1.2	20
10	Tissue factor activates allosteric networks in factorÂVIIa through structural and dynamic changes. Journal of Thrombosis and Haemostasis, 2015, 13, 262-267.	1.9	19
11	Highly Coarse-Grained Representations of Transmembrane Proteins. Journal of Chemical Theory and Computation, 2017, 13, 935-944.	2.3	17
12	Small-Angle X-ray Scattering Data in Combination with RosettaDock Improves the Docking Energy Landscape. Journal of Chemical Information and Modeling, 2017, 57, 2463-2475.	2.5	17
13	Molecular Basis of Enhanced Activity in Factor VIIa-Trypsin Variants Conveys Insights into Tissue Factor-mediated Allosteric Regulation of Factor VIIa Activity. Journal of Biological Chemistry, 2016, 291, 4671-4683.	1.6	16
14	The Potential of 19F NMR Application in GPCR Biased Drug Discovery. Trends in Pharmacological Sciences, 2021, 42, 19-30.	4.0	16
15	Inverse Conformational Selection in Lipid–Protein Binding. Journal of the American Chemical Society, 2021, 143, 13701-13709.	6.6	16
16	Secretory Phospholipase A ₂ Activity toward Diverse Substrates. Journal of Physical Chemistry B, 2011, 115, 6853-6861.	1.2	9
17	Allostery in Coagulation Factor VIIa Revealed by Ensemble Refinement of Crystallographic Structures. Biophysical Journal, 2019, 116, 1823-1835.	0.2	7
18	Conformational Plasticity-Rigidity Axis of the Coagulation Factor VII Zymogen Elucidated by Atomistic Simulations of the N-Terminally Truncated Factor VIIa Protease Domain. Biomolecules, 2021, 11, 549.	1.8	7

#	Article	IF	CITATIONS
19	Trifluorinated Keto–Enol Tautomeric Switch in Probing Domain Rotation of a G Protein-Coupled Receptor. Bioconjugate Chemistry, 2021, 32, 99-105.	1.8	7
20	The length of the linker between the epidermal growth factorâ€like domains in factor VIIa is critical for a productive interaction with tissue factor. Protein Science, 2014, 23, 1717-1727.	3.1	6
21	An in-membrane NMR spectroscopic approach probing native ligand-GPCR interaction. International Journal of Biological Macromolecules, 2022, 206, 911-916.	3.6	6
22	Uncovering Membrane-Bound Models of Coagulation Factors by Combined Experimental and Computational Approaches. Thrombosis and Haemostasis, 2021, 121, 1122-1137.	1.8	5
23	Theoretical Assessment of Fluorinated Phospholipids in the Design of Liposomal Drug-Delivery Systems. Journal of Physical Chemistry B, 2016, 120, 9661-9671.	1.2	4
24	Evolutionary conservation of the allosteric activation of factor VIIa by tissue factor in lamprey: comment. Journal of Thrombosis and Haemostasis, 2018, 16, 1450-1454.	1.9	3
25	Water-Intake and Water-Molecule Paths to the Active Site of Secretory Phospholipase A ₂ Studied Using MD Simulations and the Tracking Tool AQUA-DUCT. Journal of Physical Chemistry B, 2020, 124, 1881-1891.	1.2	2
26	A systematic approach for evaluating the role of surface-exposed loops in trypsin-like serine proteases applied to the 170 loop in coagulation factor VIIa. Scientific Reports, 2022, 12, 3747.	1.6	2
27	Binding of Neurotransmitters to Lipid Membranes. Biophysical Journal, 2014, 106, 452a.	0.2	0