
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7856737/publications.pdf Version: 2024-02-01

FLAD LACORY

#	Article	IF	CITATIONS
1	Convergence of Acquired Mutations and Alternative Splicing of <i>CD19</i> Enables Resistance to CART-19 Immunotherapy. Cancer Discovery, 2015, 5, 1282-1295.	7.7	997
2	CD19 CAR immune pressure induces B-precursor acute lymphoblastic leukaemia lineage switch exposing inherent leukaemic plasticity. Nature Communications, 2016, 7, 12320.	5.8	325
3	Early and late hematologic toxicity following CD19 CAR-T cells. Bone Marrow Transplantation, 2019, 54, 1643-1650.	1.3	254
4	MicroRNA-137 is downregulated in glioblastoma and inhibits the stemness of glioma stem cells by targeting RTVP-1. Oncotarget, 2013, 4, 665-676.	0.8	181
5	MicroRNA-mediated loss of ADAR1 in metastatic melanoma promotes tumor growth. Journal of Clinical Investigation, 2013, 123, 2703-2718.	3.9	149
6	TCR engagement negatively affects CD8 but not CD4 CAR T cell expansion and leukemic clearance. Science Translational Medicine, 2017, 9, .	5.8	136
7	Gamma-Delta CAR-T Cells Show CAR-Directed and Independent Activity Against Leukemia. Frontiers in Immunology, 2020, 11, 1347.	2.2	135
8	Use of Chimeric Antigen Receptor T Cell Therapy in Clinical Practice for Relapsed/Refractory Aggressive B Cell Non-Hodgkin Lymphoma: An Expert Panel Opinion from the American Society for Transplantation and Cellular Therapy. Biology of Blood and Marrow Transplantation, 2019, 25, 2305-2321.	2.0	132
9	MicroRNA-145 Is Downregulated in Glial Tumors and Regulates Glioma Cell Migration by Targeting Connective Tissue Growth Factor. PLoS ONE, 2013, 8, e54652.	1.1	94
10	Locally produced CD19 CAR T cells leading to clinical remissions in medullary and extramedullary relapsed acute lymphoblastic leukemia. American Journal of Hematology, 2018, 93, 1485-1492.	2.0	93
11	Murine allogeneic CD19 CAR T cells harbor potent antileukemic activity but have the potential to mediate lethal CVHD. Blood, 2016, 127, 1361-1370.	0.6	87
12	Clinical utilization of Chimeric Antigen Receptor T-cells (CAR-T) in B-cell acute lymphoblastic leukemia (ALL)–an expert opinion from the European Society for Blood and Marrow Transplantation (EBMT) and the American Society for Blood and Marrow Transplantation (ASBMT). Bone Marrow Transplantation, 2019, 54, 1868-1880.	1.3	86
13	Clinical Utilization of Chimeric Antigen Receptor T Cells in B Cell Acute Lymphoblastic Leukemia: An Expert Opinion from the European Society for Blood and Marrow Transplantation and the American Society for Transplantation and Cellular Therapy. Biology of Blood and Marrow Transplantation, 2019, 25, e76-e85.	2.0	85
14	Challenges and opportunities of allogeneic donor-derived CAR T cells. Current Opinion in Hematology, 2015, 22, 509-515.	1.2	81
15	Updates on CAR Tâ€cell therapy in Bâ€cell malignancies. Immunological Reviews, 2019, 290, 39-59.	2.8	61
16	Head-to-head comparison of in-house produced CD19 CAR-T cell in ALL and NHL patients. , 2020, 8, e000148.		42
17	Single-Agent Post-Transplantation Cyclophosphamide as Graft-versus-Host Disease Prophylaxis after Human Leukocyte Antigen–Matched Related Bone Marrow Transplantation for Pediatric and Young Adult Patients with Hematologic Malignancies. Biology of Blood and Marrow Transplantation, 2016, 22. 112-118.	2.0	37
18	The role of allogeneic HSCT after CAR T cells for acute lymphoblastic leukemia. Bone Marrow Transplantation, 2019, 54, 810-814.	1.3	33

#	Article	IF	CITATIONS
19	Murine Models of Acute Leukemia: Important Tools in Current Pediatric Leukemia Research. Frontiers in Oncology, 2014, 4, 95.	1.3	31
20	Epigenetic Profiling and Response to CD19 Chimeric Antigen Receptor T-Cell Therapy in B-Cell Malignancies. Journal of the National Cancer Institute, 2022, 114, 436-445.	3.0	29
21	CD19 CAR T-cells for pediatric relapsed acute lymphoblastic leukemia with active CNS involvement: a retrospective international study. Leukemia, 2022, 36, 1525-1532.	3.3	27
22	CAR T cells induce a complete response in refractory Burkitt Lymphoma. Bone Marrow Transplantation, 2018, 53, 1583-1585.	1.3	25
23	Treatment with anti CD19 chimeric antigen receptor T cells after antibody-based immunotherapy in adults with acute lymphoblastic leukemia. Current Research in Translational Medicine, 2020, 68, 17-22.	1.2	24
24	Comparison of non-myeloablative lymphodepleting preconditioning regimens in patients undergoing adoptive T cell therapy. , 2021, 9, e001743.		23
25	Blinatumomab as a bridge to further therapy in cases of overwhelming toxicity in pediatric Bâ€cell precursor acute lymphoblastic leukemia: Report from the Israeli Study Group of Childhood Leukemia. Pediatric Blood and Cancer, 2019, 66, e27898.	0.8	22
26	Characteristics and risk factors of infections following CD28-based CD19 CAR-T cells. Leukemia and Lymphoma, 2021, 62, 1692-1701.	0.6	22
27	Progenitor B-1 B-cell acute lymphoblastic leukemia is associated with collaborative mutations in 3 critical pathways. Blood Advances, 2017, 1, 1749-1759.	2.5	19
28	Feasibility of leukapheresis for CAR T-cell production in heavily pre-treated pediatric patients. Transfusion and Apheresis Science, 2020, 59, 102769.	0.5	19
29	Immune imitation of tumor progression after anti-CD19 chimeric antigen receptor T cells treatment in aggressive B-cell lymphoma. Bone Marrow Transplantation, 2021, 56, 1134-1143.	1.3	17
30	Role of Klotho Protein in Tumor Genesis, Cancer Progression, and Prognosis in Patients with High-Grade Glioma. World Neurosurgery, 2019, 130, e324-e332.	0.7	15
31	Relapse and Resistance to CAR-T Cells and Blinatumomab in Hematologic Malignancies. Clinical Hematology International, 2019, 1, 79.	0.7	15
32	Mitochondrial augmentation of CD34+ cells from healthy donors and patients with mitochondrial DNA disorders confers functional benefit. Npj Regenerative Medicine, 2021, 6, 58.	2.5	15
33	Point-of-care anti-CD19 CAR T-cells for treatment of relapsed and refractory aggressive B-cell lymphoma. Transplantation and Cellular Therapy, 2022, 28, 251-257.	0.6	14
34	Comparison of two cytoreductive regimens for αβâ€Tâ€cellâ€depleted haploidentical HSCT in pediatric malignancies: Improved engraftment and outcome with TBlâ€based regimen. Pediatric Blood and Cancer, 2018, 65, e26839.	0.8	12
35	Remission of acute myeloid leukemia with t(8;21) following CD19 CAR T-cells. Leukemia, 2020, 34, 1939-1942.	3.3	12
36	Upregulation of Senescent/Exhausted Phenotype of CAR T Cells and Induction of Both Treg and Myeloid Suppressive Cells Correlate with Reduced Response to CAR T Cell Therapy in Relapsed/Refractory B Cell Malignancies. Blood, 2019, 134, 3234-3234.	0.6	12

#	Article	IF	CITATIONS
37	Carina Angle Measurements for Diagnosis of Patent Ductus Arteriosus in Preterm Infants. Neonatology, 2011, 99, 224-230.	0.9	10
38	Parameters of longâ€term response with <scp>CD28</scp> â€based <scp>CD19 chimaeric antigen receptorâ€modified</scp> T cells in children and young adults with <scp>Bâ€acute lymphoblastic leukaemia</scp> . British Journal of Haematology, 2022, 197, 475-481.	1.2	10
39	The Effect of Prolonged Physical Activity Performed during Extreme Caloric Deprivation on Cardiac Function. PLoS ONE, 2012, 7, e31266.	1.1	9
40	Related to testes-specific, vespid and pathogenesis protein-1 is regulated by methylation in glioblastoma. Oncology Letters, 2014, 7, 1209-1212.	0.8	9
41	Molecular and Functional Signatures Associated with CAR T Cell Exhaustion and Impaired Clinical Response in Patients with B Cell Malignancies. Cells, 2022, 11, 1140.	1.8	8
42	First-in-Human Mitochondrial Augmentation of Hematopoietic Stem Cells in Pearson Syndrome. Blood, 2018, 132, 1024-1024.	0.6	7
43	Haploidentical hematopoietic stem cell transplantation with αβTCR+/CD19+ depletion in pediatric patients with malignant and non-malignant disorders. Bone Marrow Transplantation, 2019, 54, 694-697.	1.3	6
44	Salvage HLA-haploidentical hematopoietic stem cell transplantation with post-transplant cyclophosphamide for graft failure in non-malignant disorders. Bone Marrow Transplantation, 2021, 56, 2248-2258.	1.3	6
45	CD4 CAR T Cells Mediate CD8-like Cytotoxic Anti-Leukemic Effects Resulting in Leukemic Clearance and Are Less Susceptible to Attenuation By Endogenous TCR Activation Than CD8 CAR T Cells. Blood, 2015, 126, 100-100.	0.6	6
46	Lineage Switch As a Relapse Mechanism of Pre-B Acute Lymphoblastic Leukemia Following CD19 CAR. Blood, 2015, 126, 2524-2524.	0.6	6
47	Improved transplant outcomes with myeloablative conditioning for hemophagocytic lymphohistiocytosis in HLA-matched and mismatched donors: a national multicenter retrospective study. Bone Marrow Transplantation, 2021, 56, 2088-2096.	1.3	5
48	Neonatal Hyperpigmentation: Diagnosis of Familial Glucocorticoid Deficiency with a Novel Mutation in the Melanocortinâ€⊋ Receptor Gene. Pediatric Dermatology, 2014, 31, e13-7.	0.5	3
49	Potential Impact of Treatment with Inotuzumab Ozogamicin on Chimeric Antigen Receptor T-Cell Therapy in Children with Relapsed or Refractory Acute Lymphoblastic Leukemia. Blood, 2021, 138, 3824-3824.	0.6	3
50	Safety and Efficacy of CD19 CAR T-Cells for Pediatric Relapsed Acute Lymphoblastic Leukemia with Active CNS Involvement. Blood, 2020, 136, 1-1.	0.6	2
51	Donor assessment and follow-up: not a minor issue. Bone Marrow Transplantation, 2019, 54, 1728-1729.	1.3	1
52	Senescent/Exhausted Phenotype of CAR T Cells and Induction of Immunoregulatory Environment Correlate with Reduced Response to CAR T Cell Therapy in Relapsed/Refractory B Cell Malignancies. Biology of Blood and Marrow Transplantation, 2020, 26, S314-S315.	2.0	1
53	Bortezomib-based Anthracycline-free Induction for Pediatric Relapsed ALL as a Bridge to Immunotherapy. Journal of Pediatric Hematology/Oncology, 2021, Publish Ahead of Print, .	0.3	1
54	CRLF2 /Tslpr Overexpressing Acute Lymphoblastic Leukemia Relapse Is Driven By Chemotherapy-Induced TSLP from Bone Marrow Stromal Cells. Blood, 2015, 126, 1432-1432.	0.6	1

#	Article	IF	CITATIONS
55	Encouraging Survival and High Rates of Toxicity: Allogeneic Hematopoietic Cell Transplantation after Anti-CD19 Chimeric Antigen Receptor T-Cell Therapy in Aggressive Lymphoma Patients. Blood, 2021, 138, 910-910.	0.6	1
56	Adult Acute Lymphoblastic Leukaemia. , 2022, , 61-66.		1
57	Genetically Engineered T Cell Therapies and Immune System Engagers for Graft-Versus-Host Disease and Graft Versus Leukemia. , 2019, , 127-140.		0
58	CAR 2.0: The Next Generation of Synthetic Receptor–Based Cellular Therapy for Cancer. , 2020, , 199-208.		0
59	CAR T cells for the long run in aggressive B-cell lymphoma. Lancet Oncology, The, 2021, 22, 1347-1348.	5.1	0
60	Anterior chamber infiltration of CAR T-cells. American Journal of Ophthalmology Case Reports, 2021, 24, 101223.	0.4	0
61	41BBL-Based Activation and Expansion of Autologous Natural Killer Cells Results in Enhanced Activity Against Leukemia Including ALL. Blood, 2014, 124, 2293-2293.	0.6	0
62	CD19 CAR T Cells Maintain Efficacy in the Allogeneic Environment but Mediate Acute Graft-Versus-Host-Disease Only in the Presence CD19+ Acute Lymphoblastic Leukemia. Blood, 2014, 124, 1115-1115.	0.6	0
63	Presence of Endogenous TCR Antigen in Vivo Attenuates Efficacy of Anti-CD19 Targeted CAR T Cell Therapy. Blood, 2014, 124, 3721-3721.	0.6	0
64	<i>In Vitro</i> Drug Response Profiling in BCP- and T-ALL Primary Samples Adds a Robust Functional Layer Enabling Optimized Guidance of Individualized Therapy in Relapsed and Refractory Pediatric Acute Leukemia Patients. Blood, 2020, 136, 15-16.	0.6	0
65	The Phenotypic, Transcriptional and Functional Properties of CAR T Cells Products May Predict Response of Patients with B Cell Lymphoid Malignancies Treated with CD19 CAR-T Cells. Transplantation and Cellular Therapy, 2022, 28, S166.	0.6	0

0

66	Durable Remissions of Refractory Lymphoma in Patients with Underlying Immunodeficiencies Treated with Allogeneic HSCT. Transplantation and Cellular Therapy, 2022, 28, S414.	0.6
----	--	-----