Hans-Rudolf Wenk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/785644/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Combined texture and structure analysis of deformed limestone from time-of-flight neutron diffraction spectra. Journal of Applied Physics, 1997, 81, 594-600.	1.1	784
2	Texture analysis with the new HIPPO TOF diffractometer. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 515, 575-588.	0.7	328
3	In situ observation of texture evolution during α→β and β→α phase transformations in titanium alloys investigated by neutron diffraction. Acta Materialia, 2007, 55, 5718-5727.	3.8	174
4	Convection and anisotropy of the inner core. Geophysical Research Letters, 1988, 15, 72-75.	1.5	173
5	The plastic deformation of iron at pressures of the Earth's inner core. Nature, 2000, 405, 1044-1047.	13.7	173
6	Preferred orientations and anisotropy in shales: Callovo-Oxfordian shale (France) and Opalinus Clay (Switzerland). Clays and Clay Minerals, 2008, 56, 285-306.	0.6	171
7	Resolution of oxygen atoms in staurolite by three-dimensional transmission electron microscopy. Nature, 1990, 348, 525-528.	13.7	167
8	Rietveld texture analysis from TOF neutron diffraction data. Powder Diffraction, 2010, 25, 283-296.	0.4	164
9	Mechanical resilience and cementitious processes in Imperial Roman architectural mortar. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 18484-18489.	3.3	163
10	Fabricâ€related velocity anisotropy and shear wave splitting in rocks from the Santa Rosa Mylonite Zone, California. Journal of Geophysical Research, 1990, 95, 11213-11223.	3.3	159
11	Pure shear and simple shear calcite textures. Comparison of experimental, theoretical and natural data. Journal of Structural Geology, 1987, 9, 731-745.	1.0	151
12	Elastic anisotropy modeling of Kimmeridge shale. Journal of Geophysical Research: Solid Earth, 2013, 118, 3931-3956.	1.4	147
13	Plastic Deformation of MgGeO3 Post-Perovskite at Lower Mantle Pressures. Science, 2006, 311, 644-646.	6.0	143
14	Some basic concepts of texture analysis and comparison of three methods to calculate orientation distributions from pole figures. Journal of Applied Crystallography, 1988, 21, 285-304.	1.9	140
15	Phillipsite and Al-tobermorite mineral cements produced through low-temperature water-rock reactions in Roman marine concrete. American Mineralogist, 2017, 102, 1435-1450.	0.9	140
16	Deformation of (Mg,Fe)SiO3 Post-Perovskite and D'' Anisotropy. Science, 2007, 316, 1729-1732.	6.0	139
17	Comments on the interpretation of deformation textures in rocks. Journal of Structural Geology, 1991, 13, 1091-1110.	1.0	138
18	Unlocking the secrets of Al-tobermorite in Roman seawater concrete. American Mineralogist, 2013, 98, 1669-1687.	0.9	133

#	Article	IF	CITATIONS
19	Texture and anisotropy analysis of Qusaiba shales. Geophysical Prospecting, 2011, 59, 536-556.	1.0	131
20	Rietveld texture analysis from synchrotron diffraction images. I. Calibration and basic analysis. Powder Diffraction, 2014, 29, 76-84.	0.4	129
21	Texture measurements using the new neutron diffractometer HIPPO and their analysis using the Rietveld method. Powder Diffraction, 2004, 19, 65-68.	0.4	118
22	Texturing of the Earth's inner core by Maxwell stresses. Nature, 2001, 413, 60-63.	13.7	117
23	Viscoplastic modeling of texture development in quartzite. Journal of Geophysical Research, 1989, 94, 17895-17906.	3.3	108
24	Quantitative texture analysis with the HIPPO neutron TOF diffractometer. Journal of Applied Crystallography, 2005, 38, 462-475.	1.9	107
25	Material and Elastic Properties of <scp><scp>Al</scp><fscp>â€Tobermorite in Ancient Roman Seawater Concrete. Journal of the American Ceramic Society, 2013, 96, 2598-2606.</fscp></scp>	1.9	106
26	Texture analysis from synchrotron diffraction images with the Rietveld method: dinosaur tendon and salmon scale. Journal of Synchrotron Radiation, 2005, 12, 354-360.	1.0	103
27	Rietveld texture analysis from synchrotron diffraction images. II. Complex multiphase materials and diamond anvil cell experiments. Powder Diffraction, 2014, 29, 220-232.	0.4	102
28	Texture of Nanocrystalline Nickel: Probing the Lower Size Limit of Dislocation Activity. Science, 2012, 338, 1448-1451.	6.0	101
29	A deformation-based model for recrystallization of anisotropic materials. Acta Materialia, 1997, 45, 3283-3296.	3.8	98
30	Texture development of calcite by deformation and dynamic recrystallization at 1000 K during torsion experiments of marble to large strains. Tectonophysics, 2001, 330, 119-140.	0.9	97
31	Quantitative Rietveld texture analysis of zirconium from single synchrotron diffraction images. Journal of Applied Crystallography, 2005, 38, 377-380.	1.9	96
32	Modeling dynamic recrystallization of olivine aggregates deformed in simple shear. Journal of Geophysical Research, 1999, 104, 25513-25527.	3.3	94
33	Slip Systems in MgSiO ₃ Post-Perovskite: Implications for <i>D</i> ′′ Anisotropy. Science, 2010, 329, 1639-1641.	6.0	93
34	First-principles calculation of the elastic moduli of sheet silicates and their application to shale anisotropy. American Mineralogist, 2011, 96, 125-137.	0.9	92
35	Texture changes in the hcp→bcc→hcp transformation of zirconium studied in situ by neutron diffraction. Acta Materialia, 2004, 52, 1899-1907.	3.8	90
36	Synchrotron texture analysis with area detectors. Journal of Applied Crystallography, 2003, 36, 1040-1049.	1.9	88

#	Article	IF	CITATIONS
37	Preferred orientation and elastic anisotropy in shales. Geophysics, 2007, 72, D33-D40.	1.4	87
38	Compositional Evolution of Calcium Silicate Hydrate (<scp><scp>C–S–H</scp></scp>) Structures by Total <scp>X</scp> â€Ray Scattering. Journal of the American Ceramic Society, 2012, 95, 793-798.	1.9	86
39	Anisotropy of experimentally compressed kaolinite-illite-quartz mixtures. Geophysics, 2009, 74, D13-D23.	1.4	85
40	In situ observation of texture development in olivine, ringwoodite, magnesiowüstite and silicate perovskite at high pressure. Earth and Planetary Science Letters, 2004, 226, 507-519.	1.8	82
41	Preferred orientation and elastic anisotropy of illite-rich shale. Geophysics, 2007, 72, E69-E75.	1.4	76
42	Antigorite crystallographic preferred orientations in serpentinites from Japan. Tectonophysics, 2014, 615-616, 199-212.	0.9	76
43	Deformation of polycrystalline iron up to 30GPa and 1000K. Physics of the Earth and Planetary Interiors, 2004, 145, 239-251.	0.7	72
44	Anisotropy in the deep Earth. Physics of the Earth and Planetary Interiors, 2017, 269, 58-90.	0.7	70
45	Effect of muscovite on the strength and lattice preferred orientations of experimentally deformed quartz aggregates. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1994, 175, 209-220.	2.6	66
46	Modeling analysis of the influence of plasticity on high pressure deformation of hcp-Co. Physical Review B, 2009, 79, .	1.1	66
47	Preferred orientation of phyllosilicates: Comparison of fault gouge, shale and schist. Journal of Structural Geology, 2010, 32, 478-489.	1.0	66
48	Development of phyllonite from granodiorite: Mechanisms of grain-size reduction in the Santa Rosa mylonite zone, California. Journal of Structural Geology, 1995, 17, 689-707.	1.0	63
49	Preferred orientation of calcium aluminosilicate hydrate induced by confined compression. Cement and Concrete Research, 2018, 113, 186-196.	4.6	63
50	Calcite textures: examples from nappes with strain-path partitioning. Journal of Structural Geology, 1991, 13, 369-384.	1.0	62
51	Mineral Preferred Orientation and Microstructure in the Posidonia Shale in Relation to Different Degrees of Thermal Maturity. Clays and Clay Minerals, 2012, 60, 315-329.	0.6	61
52	Epitaxial relationships of clinopyroxene-hosted magnetite determined using electron backscatter diffraction (EBSD) technique. American Mineralogist, 2004, 89, 462-466.	0.9	59
53	Deformation and texture development in CalrO3 post-perovskite phase up to 6ÂGPa and 1300ÂK. Earth and Planetary Science Letters, 2008, 268, 515-525.	1.8	57
54	Texture analysis of a turbostratically disordered Ca-montmorillonite. American Mineralogist, 2010, 95, 98-103.	0.9	57

#	Article	IF	CITATIONS
55	display="inline"> <mml:mi>l±</mml:mi> - <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>i%</mml:mi>Phase Transition of Zirconium:<i>InÂSitu</i>Texture</mml:math 	2.9	57
56	Heterogeneous deformation and texture development in halite polycrystals: comparison of different modeling approaches and experimental data. Tectonophysics, 2003, 370, 287-311.	0.9	56
57	Development of preferred orientation and microstructure in sheared quartzite: comparison of natural data and simulated results. Tectonophysics, 1999, 312, 133-155.	0.9	54
58	Deformation in the lowermost mantle: From polycrystal plasticity to seismic anisotropy. Earth and Planetary Science Letters, 2011, 306, 33-45.	1.8	54
59	A convection model to explain anisotropy of the inner core. Journal of Geophysical Research, 2000, 105, 5663-5677.	3.3	53
60	Amorphous material in SAFOD core samples (San Andreas Fault): Evidence for crushâ€origin pseudotachylytes?. Geophysical Research Letters, 2010, 37, .	1.5	52
61	Preferred orientation of phyllosilicates in phyllonites and ultramylonites. Journal of Structural Geology, 1987, 9, 719-730.	1.0	50
62	<i>In situ</i> phase transformation and deformation of iron at high pressure and temperature. Journal of Applied Physics, 2008, 104, .	1.1	50
63	Plagioclase preferred orientation by TOF neutron diffraction and SEM-EBSD. Tectonophysics, 2003, 370, 269-286.	0.9	49
64	Texture development in deformed granodiorites from the Santa Rosa mylonite zone, southern California. Journal of Structural Geology, 1990, 12, 177-184.	1.0	45
65	A comparative study of X-ray tomographic microscopyÂon shales at different synchrotron facilities: ALS, APS and SLS. Journal of Synchrotron Radiation, 2013, 20, 172-180.	1.0	44
66	Texture analysis of a recrystallized quartzite using electron diffraction in the scanning electron microscope. Journal of Structural Geology, 2000, 22, 91-104.	1.0	43
67	Texture development and deformation mechanisms in ringwoodite. Physics of the Earth and Planetary Interiors, 2005, 152, 191-199.	0.7	43
68	Neutron Diffraction Texture Analysis. Reviews in Mineralogy and Geochemistry, 2006, 63, 399-426.	2.2	43
69	Experimental determination of the elasticity of iron at high pressure. Journal of Geophysical Research, 2008, 113, .	3.3	43
70	Experimental method for <i>in situ</i> determination of material textures at simultaneous high pressure and high temperature by means of radial diffraction in the diamond anvil cell. Review of Scientific Instruments, 2009, 80, 104501.	0.6	43
71	Deformation textures produced in diamond anvil experiments, analysed in radial diffraction geometry. Journal of Physics Condensed Matter, 2006, 18, S933-S947.	0.7	42
72	Morphology and microstructure of magnetite and ilmenite inclusions in plagioclase from Adirondack anorthositic gneiss. American Mineralogist, 2011, 96, 1316-1324.	0.9	42

#	Article	IF	CITATIONS
73	Revisiting elastic anisotropy of biotite gneiss from the Outokumpu scientific drill hole based on new texture measurements and texture-based velocity calculations. Tectonophysics, 2012, 570-571, 123-134.	0.9	41
74	Texturing of the upper mantle during convection. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 2000, 80, 573-598.	0.8	40
75	Dauphiné twinning and texture memory in polycrystalline quartz. Part 1: Experimental deformation of novaculite. Physics and Chemistry of Minerals, 2006, 33, 667-676.	0.3	40
76	Deformation of lower-mantle ferropericlase (Mg,Fe)O across the electronic spin transition. Physics and Chemistry of Minerals, 2009, 36, 585-592.	0.3	39
77	Texture development and slip systems in bridgmanite and bridgmaniteÂ+Âferropericlase aggregates. Physics and Chemistry of Minerals, 2016, 43, 597-613.	0.3	39
78	Singleâ€crystal yield surface for trigonal lattices: Application to texture transitions in calcite polycrystals. Journal of Geophysical Research, 1987, 92, 12917-12930.	3.3	38
79	Evidence for regional Dauphiné twinning in quartz from the Santa Rosa mylonite zone in Southern California. A neutron diffraction study. Journal of Structural Geology, 2005, 27, 1741-1749.	1.0	38
80	Basal slip and texture development in calcite: new results from torsion experiments. Physics and Chemistry of Minerals, 2007, 34, 73-84.	0.3	38
81	In-Situ Observation of Texture Changes during Phase Transformations in Ultra-Low-Carbon Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2007, 38, 261-267.	1.1	38
82	In situ radial X-ray diffraction study of texture and stress during phase transformations in bcc-, fcc- and hcp-iron up to 36 GPa and 1000 K. Acta Materialia, 2013, 61, 5144-5151.	3.8	37
83	Preferred orientation and anisotropy of seismic and magnetic properties in gabbronorites from the Bushveld layered intrusion. Tectonophysics, 2006, 420, 345-356.	0.9	36
84	Mechanical twinning in quartz: Shock experiments, impact, pseudotachylites and fault breccias. Tectonophysics, 2011, 510, 69-79.	0.9	36
85	Calcium Sulfoaluminate Sodalite (<scp><scp>Ca₄Al₆O₁₂SO₄</scp></scp>) Crystal Structure Evaluation and Bulk Modulus Determination. Journal of the American Ceramic Society, 2014, 97, 892-898	1.9	36
86	Dauphiné twinning as evidence for an impact origin of preferred orientation in quartzite: An example from Vredefort, South Africa. Geology, 2005, 33, 273.	2.0	34
87	Large strain shearing of halite: Experimental and theoretical evidence for dynamic texture changes. Earth and Planetary Science Letters, 2009, 280, 205-210.	1.8	34
88	Synthetic seismic anisotropy models within a slab impinging on the core–mantle boundary. Geophysical Journal International, 2014, 199, 164-177.	1.0	34
89	Anisotropy in shale from Mont Terri. The Leading Edge, 2008, 27, 742-748.	0.4	33
90	Transformations for monoclinic crystal symmetry in texture analysis. Journal of Applied Crystallography, 2009, 42, 564-571.	1.9	33

#	Article	IF	CITATIONS
91	Elastic properties of MgO nanocrystals and grain boundaries at high pressures by Brillouin scattering. Physical Review B, 2011, 84, .	1.1	33
92	The enigma of post-perovskite anisotropy: deformation versus transformation textures. Physics and Chemistry of Minerals, 2011, 38, 665-678.	0.3	33
93	Residual stress preserved in quartz from the San Andreas Fault Observatory at Depth. Geology, 2015, 43, 219-222.	2.0	33
94	On the evolution of the elastic properties of organic-rich shale upon pyrolysis-induced thermal maturation. Geophysics, 2016, 81, D263-D281.	1.4	33
95	Lattice preferred orientations and microstructures of deformed Cordilleran marbles: correlation of shear indicators and determination of strain path. Journal of Structural Geology, 1993, 15, 1189-1205.	1.0	30
96	Relationship between aggregate microstructure and mortar expansion. A case study of deformed granitic rocks from the Santa Rosa mylonite zone. Journal of Materials Science, 2008, 43, 1278-1285.	1.7	30
97	Microfibrous quartz varieties: characterization by quantitative X-ray texture analysis and transmission electron microscopy. Contributions To Mineralogy and Petrology, 1998, 130, 320-335.	1.2	29
98	Texture development and elastic stresses in magnesiowűstite at high pressure. Physics and Chemistry of Minerals, 2006, 33, 84-97.	0.3	29
99	Low-temperature deformation in calcite veins of SAFOD core samples (San Andreas Fault) — Microstructural analysis and implications for fault rheology. Tectonophysics, 2011, 509, 107-119.	0.9	29
100	Faulting processes in active faults – Evidences from TCDP and SAFOD drill core samples. Journal of Structural Geology, 2014, 65, 100-116.	1.0	29
101	Incorporating carbon sequestration materials in civil infrastructure: A micro and nano-structural analysis. Cement and Concrete Composites, 2013, 40, 14-20.	4.6	28
102	Simulations of texture development in calcite: Comparison of polycrystal plasticity theories. Journal of Geophysical Research, 1991, 96, 11865-11875.	3.3	27
103	Dauphin� twinning in deformed quartzites: Implications of an in situ TEM study of the ?-? phase transformation. Physics and Chemistry of Minerals, 1991, 17, 492.	0.3	27
104	Dauphiné twinning and texture memory in polycrystalline quartz. Part 3: texture memory during phase transformation. Physics and Chemistry of Minerals, 2009, 36, 567-583.	0.3	27
105	Combined resistive and laser heating technique for <i>in situ</i> radial X-ray diffraction in the diamond anvil cell at high pressure and temperature. Review of Scientific Instruments, 2013, 84, 025118.	0.6	27
106	Significance of mechanical twinning in hexagonal metals at high pressure. Acta Materialia, 2012, 60, 430-442.	3.8	26
107	Dauphiné twinning and texture memory in polycrystalline quartz. Physics and Chemistry of Minerals, 2007, 34, 599-607.	0.3	25
108	Diamond anvil cell deformation of CaSiO3 perovskite up to 49GPa. Physics of the Earth and Planetary Interiors, 2009, 174, 159-164.	0.7	25

#	Article	IF	CITATIONS
109	Time-of-Flight Texture Analysis of Limestone Standard: Dubna Results. Journal of Applied Crystallography, 1995, 28, 503-507.	1.9	24
110	Phosphovanadylite; a new vanadium phosphate mineral with a zeolite-type structure. American Mineralogist, 1998, 83, 889-895.	0.9	24
111	Slip and dislocation behaviour in dolomite. European Journal of Mineralogy, 2001, 13, 221-243.	0.4	24
112	Evidence for residual elastic strain in deformed natural quartz. American Mineralogist, 2009, 94, 1059-1062.	0.9	24
113	Microstructures in landslides in northwest China – Implications for creeping displacements?. Journal of Structural Geology, 2018, 106, 70-85.	1.0	24
114	Clay fabrics in SAFOD core samples. Journal of Structural Geology, 2012, 43, 118-127.	1.0	23
115	Anisotropy of physical properties in metamorphic rocks. Tectonophysics, 1974, 23, 79-98.	0.9	21
116	Chapter 95 Dislocations in Minerals. Dislocations in Solids, 2010, , 171-232.	1.6	21
117	Quartz preferred orientation in naturally deformed mylonitic rocks (Montalto shear zone–Italy): a comparison of results by different techniques, their advantages and limitations. International Journal of Earth Sciences, 2017, 106, 2259-2278.	0.9	21
118	Unambiguous indexing of trigonal crystals from white-beam Laue diffraction patterns: application to Dauphiné twinning and lattice stress mapping in deformed quartz. Journal of Applied Crystallography, 2012, 45, 982-989.	1.9	20
119	Linking preferred orientations to elastic anisotropy in Muderong Shale, Australia. Geophysics, 2015, 80, C9-C19.	1.4	20
120	Seismic anisotropy of the Dâ \in 3 layer induced by (001) deformation of post-perovskite. Nature Communications, 2017, 8, 14669.	5.8	20
121	Evidence for high stress in quartz from the impact site of Vredefort, South Africa. European Journal of Mineralogy, 2011, 23, 169-178.	0.4	19
122	Recent developments and goals in texture research of geological materials. Journal of Structural Geology, 2000, 22, 1531-1540.	1.0	18
123	Deformation twinning and residual stress in calcite studied with synchrotron polychromatic X-ray microdiffraction. Physics and Chemistry of Minerals, 2011, 38, 491-500.	0.3	18
124	Analysis of preferred orientations in PST and PZT thin films on various substrates. Integrated Ferroelectrics, 1998, 19, 121-140.	0.3	17
125	Crystallographic preferred orientation in wüstite (FeO) through the cubic-to-rhombohedral phase transition. Physics and Chemistry of Minerals, 2012, 39, 613-626.	0.3	17
126	Dauphiné twinning in polycrystalline quartz. Modelling and Simulation in Materials Science and Engineering, 2007, 15, 369-384.	0.8	15

#	Article	IF	CITATIONS
127	Preferred mineral orientation of a chloritoid-bearing slate in relation to its magnetic fabric. Journal of Structural Geology, 2015, 71, 125-135.	1.0	15
128	Intrinsic Elastic Anisotropy of Westerly Granite Observed by Ultrasound Measurements, Microstructural Investigations, and Neutron Diffraction. Journal of Geophysical Research: Solid Earth, 2021, 126, .	1.4	15
129	The Microstructure of Some Naturally Deformed Quartzites. , 1976, , 419-427.		14
130	Deformation of mylonites in Palm Canyon, California, based on xenolith geometry. Journal of Structural Geology, 1998, 20, 559-571.	1.0	14
131	Ab initio calculations of elastic constants of plagioclase feldspars. American Mineralogist, 2014, 99, 2344-2352.	0.9	14
132	Deformation heterogeneity and intragrain lattice misorientation in high strength contrast, dual-phase bridgmanite/periclase. Acta Materialia, 2020, 189, 284-298.	3.8	14
133	Seismic anisotropy of serpentinite from Val Malenco, Italy. Journal of Geophysical Research: Solid Earth, 2015, 120, 4113-4129.	1.4	13
134	Slate – A new record for crystal preferred orientation. Journal of Structural Geology, 2019, 125, 319-324.	1.0	13
135	Fabric and anisotropy of slates: From classical studies to new results. Journal of Structural Geology, 2020, 138, 104066.	1.0	12
136	Recommendations on modeling polyphase plasticity: conclusions of panel discussions. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1994, 175, 1-5.	2.6	11
137	Preferred Orientation of Quartz in Metamorphic Rocks from the Bergell Alps. Minerals (Basel,) Tj ETQq1 1 0.7843	814 rgBT / 0.8	Overlock 10
138	The influence of grain shape and volume fraction of sheet silicates on elastic properties of aggregates: Biotite platelets in an isotropic matrix. Geophysics, 2014, 79, D433-D441.	1.4	10
139	Strength and texture of sodium chloride to 56 CPa. Journal of Applied Physics, 2018, 123, 135901.	1.1	10
140	A simple variant selection in stress-driven martensitic transformation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14905-14909.	3.3	10
141	Peristerite exsolution in metamorphic plagioclase from the Lepontine Alps; an analytical and transmission electron microscope study. American Mineralogist, 1999, 84, 517-527.	0.9	10
142	Orientation Distribution Diagrams for Three Yule Marble Fabrics. Geophysical Monograph Series, 0, , 83-94.	0.1	9
143	Tracking mechanical Dauphiné twin evolution with applied stress in axial compression experiments on a low-grade metamorphic quartzite. Journal of Structural Geology, 2018, 112, 81-94.	1.0	9
144	3D Nanotomography of calcium silicate hydrates by transmission electron microscopy. Journal of the American Ceramic Society, 2021, 104, 1852-1862.	1.9	9

#	Article	IF	CITATIONS
145	Compressional residual stress in Bastogne boudins revealed by synchrotron Xâ€ray microdiffraction. Geophysical Research Letters, 2016, 43, 6178-6185.	1.5	8
146	Microstructures and their implications for faulting processes –Insights from DGLab core samples from the Gulf of Corinth. Journal of Structural Geology, 2016, 86, 62-74.	1.0	8
147	Fallout melt debris and aerodynamically-shaped glasses in beach sands of Hiroshima Bay, Japan. Anthropocene, 2019, 25, 100196.	1.6	8
148	Deformation microstructures and lattice orientations of plagioclase in Gabbros from central Australia. Geophysical Monograph Series, 1990, , 173-186.	0.1	7
149	Method for <i>in situ</i> texture investigation of recrystallization of Cu and Ti by high-energy synchrotron X-ray diffraction. International Journal of Materials Research, 2003, 94, 1199-1205.	0.8	7
150	In situ TEM observations of plastic deformation in quartz crystals. Physics and Chemistry of Minerals, 2014, 41, 757-765.	0.3	7
151	Preferred orientation in experimentally deformed stishovite: implications for deformation mechanisms. Physics and Chemistry of Minerals, 2015, 42, 275-285.	0.3	7
152	Preferred Orientation Patterns of Phyllosilicates In Surface Clays. Clays and Clay Minerals, 2017, 65, 329-341.	0.6	7
153	<i>XtalCAMP</i> : a comprehensive program for the analysis and visualization of scanning Laue X-ray micro-/nanodiffraction data. Journal of Applied Crystallography, 2020, 53, 1392-1403.	1.9	7
154	Residual lattice strain in quartzites as a potential palaeo-piezometer. Geophysical Journal International, 2020, 222, 1363-1378.	1.0	7
155	Texture and elastic anisotropy of a mylonitic anorthosite from the Morin Shear Zone (Quebec,) Tj ETQq1 1 0.784	314 rgBT 1.0	Oyerlock 10
156	Exploring microstructures in lower mantle mineral assemblages with synchrotron x-rays. Science Advances, 2021, 7, .	4.7	6
157	Seismic anisotropy, dominant slip systems and phase transitions in the lowermost mantle. Geophysical Journal International, 2021, 227, 1665-1681.	1.0	6
158	Application of Neutron Scattering in Earth Sciences. Jom, 2012, 64, 127-137.	0.9	5
159	Elastic anisotropy of Tambo gneiss from Promontogno, Switzerland: a comparison of crystal orientation and microstructure-based modeling and experimental measurements. Geophysical Journal International, 0, , ggw487.	1.0	5
160	Microlite orientation in obsidian flow measured by synchrotron X-ray diffraction. Contributions To Mineralogy and Petrology, 2018, 173, 1.	1.2	5
161	Fehlbau in Quarzkristallen aus Tektoniten. Contributions To Mineralogy and Petrology, 1966, 12, 63-72.	1.2	4
162	3-D Imaging of Crystals at Atomic Resolution. Materials Research Society Symposia Proceedings, 1994, 332, 563.	0.1	4

10

#	Article	IF	CITATIONS
163	Microstructural evolution and deformation mechanisms of Khao Kho Fault, Thailand. Journal of Structural Geology, 2020, 136, 104055.	1.0	4
164	Texture Analysis of Quartzite by Whole Pattern Deconvolution. Textures and Microstructures, 1999, 33, 139-149.	0.2	3
165	Using Multigrain Crystallography to Explore the Microstructural Evolution of the α-Olivine to γ-Ringwoodite Transformation and ε-Mg2SiO4 at High Pressure and Temperature. Minerals (Basel,) Tj ETQq1 1	0.7 &\$ 314	rg B T /Overloo
166	Slags as Evidence for Copper Mining above Casaccia, Val Bregaglia (Central Alps). Minerals (Basel,) Tj ETQq0 0 0	rgBT/Ove	erloçk 10 Tf 50
167	TOF Measurements of Pulsed Neutrons for Texture Analysis of Low Symmetry Materials. Materials Research Society Symposia Proceedings, 1989, 166, 337.	0.1	1
168	Texture Analysis of Earth Materials. Comparison of EBSD With Other Diffraction Techniques. Microscopy and Microanalysis, 1999, 5, 228-229.	0.2	0
169	Deformation of binary and boron-doped Ni3Al alloys at high pressures studied with synchrotron x-ray diffraction. Journal of Applied Physics, 2021, 129, 225101.	1.1	Ο
170	Texture Changes During Phase Transformations Studied in situ With Neutron Diffraction. Ceramic Transactions, 0, , 103-113.	0.1	0
171	OS1101 Dynamic observations of Dauphine twinning of α-quartz by in-situ TEM compression testing. The Proceedings of the Materials and Mechanics Conference, 2014, 2014, _OS1101-1OS1101-2	0.0	Ο
172	The Textures of Rocks in the Earth's Deep Interior: Part I. Understanding Anisotropy and Textures in Earth Materials â~†. , 2017, , .		0
173	Method for <i>in situ</i> texture investigation of recrystallization of Cu and Ti by high-energy synchrotron X-ray diffraction. International Journal of Materials Research, 2022, 94, 1199-1205.	0.1	0