
Herre Jelger Risselada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7856127/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanistic insights into the size-dependent effects of nanoparticles on inhibiting and accelerating amyloid fibril formation. Journal of Colloid and Interface Science, 2022, 622, 804-818.	9.4	17
2	Efficient Quantification of Lipid Packing Defect Sensing by Amphipathic Peptides: Comparing Martini 2 and 3 with CHARMM36. Journal of Chemical Theory and Computation, 2022, 18, 4503-4514.	5.3	9
3	Where are those lipid nano rings?. Journal of Colloid and Interface Science, 2021, 587, 789-796.	9.4	3
4	Martini 3: a coarse-grained force field with an eye for atomic detail. Nature Methods, 2021, 18, 342-343.	19.0	7
5	Quantifying Membrane Curvature Sensing of Peripheral Proteins by Simulated Buckling and Umbrella Sampling. Journal of Chemical Theory and Computation, 2021, 17, 5276-5286.	5.3	10
6	How proteins open fusion pores: insights from molecular simulations. European Biophysics Journal, 2021, 50, 279-293.	2.2	17
7	Growth, Polymorphism, and Spatially Controlled Surface Immobilization of Biotinylated Variants of IAPP _{21–27} Fibrils. Biomacromolecules, 2020, 21, 783-792.	5.4	3
8	Density Field Thermodynamic Integration (DFTI): A "Soft―Approach to Calculate the Free Energy of Surfactant Self-Assemblies. Journal of Physical Chemistry B, 2020, 124, 6775-6785.	2.6	5
9	Liquids relax and unify strain in graphene. Nature Communications, 2020, 11, 898.	12.8	20
10	Fusion Pores Live on the Edge. Journal of Physical Chemistry Letters, 2020, 11, 1204-1208.	4.6	6
11	Membrane Thinning Induces Sorting of Lipids and the Amphipathic Lipid Packing Sensor (ALPS) Protein Motif. Frontiers in Physiology, 2020, 11, 250.	2.8	20
12	SNAREs, tethers and SM proteins: how to overcome the final barriers to membrane fusion?. Biochemical Journal, 2020, 477, 243-258.	3.7	23
13	Thermodynamically reversible paths of the first fusion intermediate reveal an important role for membrane anchors of fusion proteins. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2571-2576.	7.1	65
14	Cholesterol: The Plasma Membrane's Constituent that Chooses Sides. Biophysical Journal, 2019, 116, 2235-2236.	0.5	5
15	Impact of nanoparticles on amyloid peptide and protein aggregation: a review with a focus on gold nanoparticles. Nanoscale, 2018, 10, 20894-20913.	5.6	121
16	The 2018 biomembrane curvature and remodeling roadmap. Journal Physics D: Applied Physics, 2018, 51, 343001.	2.8	212
17	<scp>SNARE</scp> â€mediated membrane fusion arrests at pore expansion to regulate the volume ofÂanÂorganelle. EMBO Journal, 2018, 37, .	7.8	39
18	Membrane Fusion Stalks and Lipid Rafts: A Love-Hate Relationship. Biophysical Journal, 2017, 112, 2475-2478.	0.5	22

Herre Jelger Risselada

#	Article	IF	CITATIONS
19	A tethering complex drives the terminal stage of SNARE-dependent membrane fusion. Nature, 2017, 551, 634-638.	27.8	92
20	Steric hindrance of SNARE transmembrane domainÂorganization impairs the hemifusionâ€ŧoâ€fusion transition. EMBO Reports, 2016, 17, 1590-1608.	4.5	20
21	Goldâ€Induced Fibril Growth: The Mechanism of Surfaceâ€Facilitated Amyloid Aggregation. Angewandte Chemie - International Edition, 2016, 55, 11242-11246.	13.8	81
22	Exploiting Lipid Permutation Symmetry to Compute Membrane Remodeling Free Energies. Physical Review Letters, 2016, 117, 188102.	7.8	27
23	Gold läst Fibrillen wachsen: der Mechanismus der oberflähenunterstützten Amyloidâ€Aggregation. Angewandte Chemie, 2016, 128, 11408-11412.	2.0	2
24	<scp>PspF</scp> â€binding domain <scp>PspA</scp> _{1–144} and the <scp>PspA</scp> · <scp>F</scp> complex: New insights into the coiled–coilâ€dependent regulation of <scp>AAA</scp> + proteins. Molecular Microbiology, 2015, 98, 743-759.	2.5	33
25	TatBC-Independent TatA/Tat Substrate Interactions Contribute to Transport Efficiency. PLoS ONE, 2015, 10, e0119761.	2.5	20
26	Simulations Move Toward a Cure for Viral Diseases. Structure, 2015, 23, 439-440.	3.3	1
27	Expansion of the fusion stalk and its implication for biological membrane fusion. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11043-11048.	7.1	99
28	Free Energy Landscape of Rim-Pore Expansion in Membrane Fusion. Biophysical Journal, 2014, 107, 2287-2295.	0.5	30
29	How SNARE molecules mediate membrane fusion: Recent insights from molecular simulations. Current Opinion in Structural Biology, 2012, 22, 187-196.	5.7	121
30	Line-Tension Controlled Mechanism for Influenza Fusion. PLoS ONE, 2012, 7, e38302.	2.5	63
31	Curvature-Dependent Elastic Properties of Liquid-Ordered Domains Result in Inverted Domain Sorting on Uniaxially Compressed Vesicles. Physical Review Letters, 2011, 106, 148102.	7.8	41
32	Membrane protein sequestering by ionic protein–lipid interactions. Nature, 2011, 479, 552-555.	27.8	515
33	Caught in the Act: Visualization of SNAREâ€Mediated Fusion Events in Molecular Detail. ChemBioChem, 2011, 12, 1049-1055.	2.6	134
34	The freezing process of small lipid vesicles at molecular resolution. Soft Matter, 2009, 5, 4531.	2.7	30
35	3D Pressure Field in Lipid Membranes and Membrane-Protein Complexes. Physical Review Letters, 2009, 102, 078101.	7.8	180
36	Curvature effects on lipid packing and dynamics in liposomes revealed by coarse grained molecular dynamics simulations. Physical Chemistry Chemical Physics, 2009, 11, 2056.	2.8	172

#	Article	IF	CITATIONS
37	Application of Mean Field Boundary Potentials in Simulations of Lipid Vesicles. Journal of Physical Chemistry B, 2008, 112, 7438-7447.	2.6	63
38	The molecular face of lipid rafts in model membranes. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17367-17372.	7.1	493
39	The MARTINI Force Field:  Coarse Grained Model for Biomolecular Simulations. Journal of Physical Chemistry B, 2007, 111, 7812-7824.	2.6	4,650