
James Pankhurst

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7855890/publications.pdf Version: 2024-02-01

IAMES DANKHUDST

#	Article	IF	CITATIONS
1	Modulating the Reactivity of Liquid Ga Nanoparticle Inks by Modifying Their Surface Chemistry. Journal of the American Chemical Society, 2022, 144, 1993-2001.	6.6	20
2	Copper Phosphonate Lamella Intermediates Control the Shape of Colloidal Copper Nanocrystals. Journal of the American Chemical Society, 2022, 144, 12261-12271.	6.6	8
3	Colloidal Nanocrystals as Electrocatalysts with Tunable Activity and Selectivity. ACS Catalysis, 2021, 11, 1248-1295.	5.5	51
4	Elucidating the Facet-Dependent Selectivity for CO ₂ Electroreduction to Ethanol of Cu–Ag Tandem Catalysts. ACS Catalysis, 2021, 11, 4456-4463.	5.5	130
5	Copper Nanocrystal Morphology Determines the Viability of Molecular Surface Functionalization in Tuning Electrocatalytic Behavior in CO2 Reduction. Inorganic Chemistry, 2021, 60, 6939-6945.	1.9	3
6	N-Heterocyclic and Mesoionic Carbene Complexes of the Actinides. , 2021, , .		2
7	Elucidating the structure-dependent selectivity of CuZn towards methane and ethanol in CO ₂ electroreduction using tailored Cu/ZnO precatalysts. Chemical Science, 2021, 12, 14484-14493.	3.7	37
8	Theory-Guided Enhancement of CO ₂ Reduction to Ethanol on Ag–Cu Tandem Catalysts via Particle-Size Effects. ACS Catalysis, 2021, 11, 13330-13336.	5.5	34
9	Ligand-mediated formation of Cu/metal oxide hybrid nanocrystals with tunable number of interfaces. Chemical Science, 2020, 11, 13094-13101.	3.7	10
10	Colloidal Synthesis of Cu–M–S (M = V, Cr, Mn) Nanocrystals by Tuning the Copper Precursor Reactivity. Chemistry of Materials, 2020, 32, 9780-9786.	3.2	15
11	Exploring the Chemical Reactivity of Gallium Liquid Metal Nanoparticles in Galvanic Replacement. Journal of the American Chemical Society, 2020, 142, 19283-19290.	6.6	54
12	Metal–ligand bond strength determines the fate of organic ligands on the catalyst surface during the electrochemical CO ₂ reduction reaction. Chemical Science, 2020, 11, 9296-9302.	3.7	35
13	Polymer Lamellae as Reaction Intermediates in the Formation of Copper Nanospheres as Evidenced by Inâ€Situ Xâ€ray Studies. Angewandte Chemie, 2020, 132, 11724-11730.	1.6	3
14	Pressure-induced inclusion of neon in the crystal structure of a molecular Cu2(pacman) complex at 4.67 GPa. Chemical Communications, 2020, 56, 3449-3452.	2.2	2
15	Polymer Lamellae as Reaction Intermediates in the Formation of Copper Nanospheres as Evidenced by Inâ€Situ Xâ€ray Studies. Angewandte Chemie - International Edition, 2020, 59, 11627-11633.	7.2	12
16	Nanocrystal/Metal–Organic Framework Hybrids as Electrocatalytic Platforms for CO ₂ Conversion. Angewandte Chemie - International Edition, 2019, 58, 12632-12639.	7.2	112
17	Nanocrystal/Metal–Organic Framework Hybrids as Electrocatalytic Platforms for CO 2 Conversion. Angewandte Chemie, 2019, 131, 12762-12769.	1.6	23
18	Insights into Reaction Intermediates to Predict Synthetic Pathways for Shape-Controlled Metal Nanocrystals. Journal of the American Chemical Society, 2019, 141, 16312-16322.	6.6	47

JAMES PANKHURST

#	ARTICLE	IF	CITATIONS
19	Polynuclear alkoxy–zinc complexes of bowl-shaped macrocycles and their use in the copolymerisation of cyclohexene oxide and CO ₂ . Dalton Transactions, 2019, 48, 4887-4893.	1.6	25
20	Molecular tunability of surface-functionalized metal nanocrystals for selective electrochemical CO ₂ reduction. Chemical Science, 2019, 10, 10356-10365.	3.7	54
21	Interactions of vanadium(<scp>iv</scp>) with amidoxime ligands: redox reactivity. Dalton Transactions, 2018, 47, 5695-5702.	1.6	14
22	Earth-Abundant Mixed-Metal Catalysts for Hydrocarbon Oxygenation. Inorganic Chemistry, 2018, 57, 5915-5928.	1.9	11
23	Uranium rhodium bonding in heterometallic complexes. Dalton Transactions, 2017, 46, 5540-5545.	1.6	36
24	Triggering Redox Activity in a Thiophene Compound: Radical Stabilization and Coordination Chemistry. Angewandte Chemie - International Edition, 2017, 56, 7939-7943.	7.2	11
25	Triggering Redox Activity in a Thiophene Compound: Radical Stabilization and Coordination Chemistry. Angewandte Chemie, 2017, 129, 8047-8051.	1.6	4
26	Benzoquinonoid-bridged dinuclear actinide complexes. Dalton Transactions, 2017, 46, 11615-11625.	1.6	18
27	Rational Synthesis and Electronic Structure of Functionalized Trinuclear Pd Metal Sheet Sandwich Complexes. Organometallics, 2017, 36, 2772-2783.	1.1	12
28	Inner-sphere vs. outer-sphere reduction of uranyl supported by a redox-active, donor-expanded dipyrrin. Chemical Science, 2017, 8, 108-116.	3.7	64
29	Metal–Metal Bonding in Uranium–Group 10 Complexes. Journal of the American Chemical Society, 2016, 138, 3333-3345.	6.6	79
30	Macrocyclic Platforms for the Construction of Tetranuclear Oxo and Hydroxo Zinc Clusters. Organometallics, 2015, 34, 2608-2613.	1.1	19
31	Towards dipyrrins: oxidation and metalation of acyclic and macrocyclic Schiff-base dipyrromethanes. Dalton Transactions, 2015, 44, 2066-2070.	1.6	26
32	Nanocrystal/Metal-Organic Framework Hybrids as Electrocatalytic Platform for CO2 Conversion. , 0, ,		0
33	Nanocrystal/Metal-Organic Framework Hybrids as Electrocatalytic Platform for CO2 Conversion. , 0, ,		О