
Elena Paslaru

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7855786/publications.pdf Version: 2024-02-01

FIENA DASIADII

#	Article	IF	CITATIONS
1	Characterization of bark, needles and cones from silver fir (Abies alba mill.) towards valorization of biomass forestry residues. Biomass and Bioenergy, 2022, 159, 106413.	2.9	14
2	Synthesis of Bioactive Materials by In Situ One-Step Direct Loading of Syzygium aromaticum Essential Oil into Chitosan-Based Hydrogels. Gels, 2022, 8, 225.	2.1	11
3	Mucoadhesive and Antimicrobial Allantoin/Ĵ² Cyclodextrins-Loaded Carbopol Gels as Scaffolds for Regenerative Medicine. Gels, 2022, 8, 416.	2.1	3
4	Bio-Based Bioplastics in Active Food Packaging. , 2021, , 347-379.		1
5	Towards a Bioactive Food Packaging: Poly(Lactic Acid) Surface Functionalized by Chitosan Coating Embedding Clove and Argan Oils. Molecules, 2021, 26, 4500.	1.7	31
6	Bioactive Electrospun Fibers of Poly(ε-Caprolactone) Incorporating α-Tocopherol for Food Packaging Applications. Molecules, 2021, 26, 5498.	1.7	15
7	Application of Vegetal Oils in Developing Bioactive Paper-Based Materials for Food Packaging. Coatings, 2021, 11, 1211.	1.2	7
8	Stabilization Techniques of Essential Oils by Incorporation into Biodegradable Polymeric Materials for Food Packaging. Molecules, 2021, 26, 6307.	1.7	13
9	Cellular response to synthetic polymers. , 2020, , 269-319.		1
10	Influence of the Chitosan and Rosemary Extract on Fungal Biodegradation of Some Plasticized PLA-Based Materials. Polymers, 2020, 12, 469.	2.0	9
11	New Developments in Medical Applications of Hybrid Hydrogels Containing Natural Polymers. Molecules, 2020, 25, 1539.	1.7	161
12	Development of Bioactive Polymeric Materials by Incorporation of Essential/Vegetal Oils into Biopolymer Matrices. , 2020, 69, .		2
13	Biocompatible Materials Based on Plasticized Poly(lactic acid), Chitosan and Rosemary Ethanolic Extract I. Effect of Chitosan on the Properties of Plasticized Poly(lactic acid) Materials. Polymers, 2019, 11, 941.	2.0	51
14	Chitosan-Based Bionanocomposite Films Prepared by Emulsion Technique for Food Preservation. Materials, 2019, 12, 373.	1.3	63
15	Evaluation of the Rosemary Extract Effect on the Properties of Polylactic Acid-Based Materials. Materials, 2018, 11, 1825.	1.3	36
16	Biodegradation of poly(lactic acid)/chitosan stratified composites in presence of the Phanerochaete chrysosporium fungus. Polymer Degradation and Stability, 2017, 143, 118-129.	2.7	37
17	Comparative Analysis of the Composition and Active Property Evaluation of Certain Essential Oils to Assess their Potential Applications in Active Food Packaging. Materials, 2017, 10, 45.	1.3	50
18	Hybrid Nanostructures Containing Sulfadiazine Modified Chitosan as Antimicrobial Drug Carriers. Nanomaterials, 2016, 6, 207.	1.9	18

Elena Paslaru

#	Article	IF	CITATIONS
19	PDLC composites based on polyvinyl boric acid matrix – a promising pathway towards biomedical engineering. Liquid Crystals, 2016, 43, 1973-1985.	0.9	35
20	Complex poly(lactic acid)-based biomaterial for urinary catheters: I. Influence of AgNP on properties. Bioinspired, Biomimetic and Nanobiomaterials, 2016, 5, 132-151.	0.7	4
21	Complex poly(lactic acid)-based biomaterial for urinary catheters: II. Biocompatibility. Bioinspired, Biomimetic and Nanobiomaterials, 2016, 5, 152-166.	0.7	9
22	Formulation and evaluation of anise-based bioadhesive vaginal gels. Biomedicine and Pharmacotherapy, 2016, 83, 485-495.	2.5	12
23	Lactoferrin-Immobilized Surfaces onto Functionalized PLA Assisted by the Gamma-Rays and Nitrogen Plasma to Create Materials with Multifunctional Properties. ACS Applied Materials & Interfaces, 2016, 8, 31902-31915.	4.0	33
24	Investigation on thermal, rheological, dielectric and spectroscopic properties of a polymer containing pendant spiroacetal moieties. Materials Chemistry and Physics, 2016, 180, 291-300.	2.0	4
25	Tailorable polyelectrolyte protein complex based on poly(aspartic acid) and bovine serum albumin. Designed Monomers and Polymers, 2016, 19, 596-606.	0.7	9
26	Polyethylene materials with multifunctional surface properties by electrospraying chitosan/vitamin E formulation destined to biomedical and food packaging applications. Iranian Polymer Journal (English) Tj ETQqO	O OirgeBT /C	Dv erz łock 10 T
27	Novel procedure to enhance PLA surface properties by chitosan irreversible immobilization. Applied Surface Science, 2016, 367, 407-417.	3.1	60
28	Surface characterization and antimicrobial properties of sodium deoxycholate-based poly(ester) Tj ETQq0 0 0 rgI	3T /Overloo 2.0	ck 10 Tf 50 3 16
29	Plasma-activated fibrinogen coatings onto poly(vinylidene fluoride) surface for improving biocompatibility with tissues. Journal of Bioactive and Compatible Polymers, 2016, 31, 91-108.	0.8	11
30	Mechanical behavior at nanoscale of chitosanâ€coated PE surface. Journal of Applied Polymer Science, 2015, 132, .	1.3	3
31	Polyurethane–extracellular matrix/silver bionanocomposites for urinary catheters. Journal of Bioactive and Compatible Polymers, 2015, 30, 99-113.	0.8	16
32	Polymer-dispersed liquid crystal composites for bio-applications: thermotropic, surface and optical properties. Liquid Crystals, 2015, 42, 370-382.	0.9	60
33	Patterning poly(maleic anhydride-co-3,9-divinyl-2,4,8,10-tetraoxaspiro (5.5) undecane) copolymer bioconjugates for controlled release of drugs. International Journal of Pharmaceutics, 2015, 493, 328-340.	2.6	5
34	Imino-chitosan biopolymeric films. Obtaining, self-assembling, surface and antimicrobial properties. Carbohydrate Polymers, 2015, 117, 762-770.	5.1	94
35	Polyurethane biocompatible silver bionanocomposites for biomedical applications. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	24
36	Immunoglobulin G immobilization on PVDF surface. Colloids and Surfaces B: Biointerfaces, 2014, 115, 139-149.	2.5	20

Elena Paslaru

#	Article	IF	CITATIONS
37	Monodisperse PDLC composites generated by use of polyvinyl alcohol boric acid as matrix. RSC Advances, 2014, 4, 38397-38404.	1.7	17
38	Effect of Nanoclay Hydrophilicity on the Poly(lactic acid)/Clay Nanocomposites Properties. Industrial & Engineering Chemistry Research, 2014, 53, 7877-7890.	1.8	78
39	Stability of a chitosan layer deposited onto a polyethylene surface. Journal of Applied Polymer Science, 2013, 130, 2444-2457.	1.3	24
40	Microwave plasma activation of a polyvinylidene fluoride surface for protein immobilization. Journal Physics D: Applied Physics, 2011, 44, 475303.	1.3	24