
Yingchao Dong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7855345/publications.pdf Version: 2024-02-01

ΥΙΝΟΟΗΛΟ ΠΟΝΟ

#	Article	IF	CITATIONS
1	A low-cost mullite-titania composite ceramic hollow fiber microfiltration membrane for highly efficient separation of oil-in-water emulsion. Water Research, 2016, 90, 277-285.	5.3	241
2	Application of ceramic microfiltration membrane modified by nano-TiO2 coating in separation of a stable oil-in-water emulsion. Journal of Membrane Science, 2014, 456, 128-133.	4.1	204
3	Fabrication and Water Treatment Application of Carbon Nanotubes (CNTs)-Based Composite Membranes: A Review. Membranes, 2017, 7, 16.	1.4	171
4	Feasible recycling of industrial waste coal fly ash for preparation of anorthite-cordierite based porous ceramic membrane supports with addition of dolomite. Journal of the European Ceramic Society, 2016, 36, 1059-1071.	2.8	163
5	Recycling of waste fly ash for production of porous mullite ceramic membrane supports with increased porosity. Journal of the European Ceramic Society, 2014, 34, 3181-3194.	2.8	155
6	Stable Superhydrophobic Ceramic-Based Carbon Nanotube Composite Desalination Membranes. Nano Letters, 2018, 18, 5514-5521.	4.5	153
7	Preparation of cordierite-based porous ceramic micro-filtration membranes using waste fly ash as the main raw materials. Journal of Membrane Science, 2006, 285, 173-181.	4.1	131
8	Environment-oriented low-cost porous mullite ceramic membrane supports fabricated from coal gangue and bauxite. Journal of Hazardous Materials, 2014, 273, 136-145.	6.5	129
9	Preparation of low-cost mullite ceramics from natural bauxite and industrial waste fly ash. Journal of Alloys and Compounds, 2008, 460, 599-606.	2.8	126
10	Waste-to-Resource Strategy To Fabricate Highly Porous Whisker-Structured Mullite Ceramic Membrane for Simulated Oil-in-Water Emulsion Wastewater Treatment. ACS Sustainable Chemistry and Engineering, 2016, 4, 2098-2106.	3.2	121
11	Elaboration and chemical corrosion resistance of tubular macro-porous cordierite ceramic membrane supports. Journal of Membrane Science, 2007, 304, 65-75.	4.1	110
12	A low-cost alumina-mullite composite hollow fiber ceramic membrane fabricated via phase-inversion and sintering method. Journal of the European Ceramic Society, 2016, 36, 2057-2066.	2.8	104
13	Recycling of fly ash for preparing porous mullite membrane supports with titania addition. Journal of Hazardous Materials, 2010, 180, 173-180.	6.5	99
14	Cost and efficiency perspectives of ceramic membranes for water treatment. Water Research, 2022, 220, 118629.	5.3	96
15	Self-sustained hydrophilic nanofiber thin film composite forward osmosis membranes: Preparation, characterization and application for simulated antibiotic wastewater treatment. Journal of Membrane Science, 2017, 523, 205-215.	4.1	95
16	Fabrication and characterization of low cost tubular mineral-based ceramic membranes for micro-filtration from natural zeolite. Journal of Membrane Science, 2006, 281, 592-599.	4.1	94
17	Waste-to-resource preparation of a porous ceramic membrane support featuring elongated mullite whiskers with enhanced porosity and permeance. Journal of the European Ceramic Society, 2015, 35, 711-721.	2.8	94
18	Investigation of cobalt-free cathode material Sm0.5Sr0.5Fe0.8Cu0.2O3â^´Î´ for intermediate temperature solid oxide fuel cell. International Journal of Hydrogen Energy, 2010, 35, 6905-6910.	3.8	93

Yingchao Dong

#	Article	IF	CITATIONS
19	Reaction-sintered porous mineral-based mullite ceramic membrane supports made from recycled materials. Journal of Hazardous Materials, 2009, 172, 180-186.	6.5	92
20	Sintering and characterization of flyash-based mullite with MgO addition. Journal of the European Ceramic Society, 2011, 31, 687-695.	2.8	85
21	TiO2 nanotubes coupled with nano-Cu(OH)2 for highly efficient photocatalytic hydrogen production. International Journal of Hydrogen Energy, 2013, 38, 2126-2135.	3.8	79
22	Waste recycling of coal fly ash for design of highly porous whisker-structured mullite ceramic membranes. Journal of the European Ceramic Society, 2019, 39, 5320-5331.	2.8	78
23	Intermediate-to-low temperature protonic ceramic membrane fuel cells with Ba0.5Sr0.5Co0.8Fe0.2O3-δ〓BaZr0.1Ce0.7Y0.2O3-δ composite cathode. Journal of Power Sources, 2009, 186, 58-61.	4.0	77
24	Robust ultrathin nanoporous MOF membrane with intra-crystalline defects for fast water transport. Nature Communications, 2022, 13, 266.	5.8	76
25	Cross-linked Graphene Oxide Framework Membranes with Robust Nano-Channels for Enhanced Sieving Ability. Environmental Science & Technology, 2020, 54, 15442-15453.	4.6	75
26	Corrosion resistance characterization of porous alumina membrane supports. Materials Characterization, 2011, 62, 409-418.	1.9	70
27	In situ screen-printed BaZr0.1Ce0.7Y0.2O3â~δelectrolyte-based protonic ceramic membrane fuel cells with layered SmBaCo2O5+x cathode. Journal of Power Sources, 2009, 186, 446-449.	4.0	67
28	Spinel-based ceramic membranes coupling solid sludge recycling with oily wastewater treatment. Water Research, 2020, 169, 115180.	5.3	66
29	Flexible Superhydrophobic Metal-Based Carbon Nanotube Membrane for Electrochemically Enhanced Water Treatment. Environmental Science & Technology, 2020, 54, 9074-9082.	4.6	65
30	Engineering a Nanocomposite Interlayer for a Novel Ceramic-Based Forward Osmosis Membrane with Enhanced Performance. Environmental Science & Technology, 2020, 54, 7715-7724.	4.6	63
31	Coal fly ash industrial waste recycling for fabrication of mullite-whisker-structured porous ceramic membrane supports. RSC Advances, 2015, 5, 11163-11174.	1.7	62
32	A review of CO2 sorbents for promoting hydrogen production in the sorption-enhanced steam reforming process. International Journal of Hydrogen Energy, 2021, 46, 23358-23379.	3.8	58
33	Robust zirconia ceramic membrane with exceptional performance for purifying nano-emulsion oily wastewater. Water Research, 2022, 208, 117859.	5.3	55
34	Effect of particle size distribution of raw powders on pore size distribution and bending strength of Al2O3 microfiltration membrane supports. Journal of the European Ceramic Society, 2014, 34, 3819-3825.	2.8	52
35	Utilization of sepiolite in the synthesis of porous cordierite ceramics. Applied Clay Science, 2011, 52, 328-332.	2.6	51
36	A phase-inversion casting process for preparation of tubular porous alumina ceramic membranes. Journal of the European Ceramic Society, 2015, 35, 3187-3194.	2.8	48

#	Article	IF	CITATIONS
37	Fabrication of mullite ceramic-supported carbon nanotube composite membranes with enhanced performance in direct separation of high-temperature emulsified oil droplets. Journal of Membrane Science, 2019, 582, 140-150.	4.1	48
38	High-flux robust ceramic membranes functionally decorated with nano-catalyst for emerging micro-pollutant removal from water. Journal of Membrane Science, 2020, 611, 118281.	4.1	47
39	Treatment of oily wastewaters by highly porous whisker-constructed ceramic membranes: Separation performance and fouling models. Water Research, 2022, 211, 118042.	5.3	47
40	Facile and green synthesis of titanate nanotube/graphene nanocomposites for photocatalytic H2 generation from water. International Journal of Hydrogen Energy, 2013, 38, 9178-9185.	3.8	45
41	Enhancing the photocatalytic H ₂ evolution activity of red phosphorous by using noble-metal-free Ni(OH) ₂ under photoexcitation up to 700 nm. RSC Advances, 2014, 4, 44823-44826.	1.7	42
42	Phase evolution and sintering characteristics of porous mullite ceramics produced from the flyash-Al(OH)3 coating powders. Journal of Alloys and Compounds, 2008, 460, 651-657.	2.8	40
43	Recent development of pressure retarded osmosis membranes for water and energy sustainability: A critical review. Water Research, 2021, 189, 116666.	5.3	40
44	Cost-effective utilization of mineral-based raw materials for preparation of porous mullite ceramic membranes via in-situ reaction method. Applied Clay Science, 2016, 120, 135-141.	2.6	39
45	Reactable substrate participating interfacial polymerization for thin film composite membranes with enhanced salt rejection performance. Desalination, 2018, 436, 1-7.	4.0	39
46	High sintering activity Cu–Gd co-doped CeO2 electrolyte for solid oxide fuel cells. Journal of Power Sources, 2010, 195, 6510-6515.	4.0	38
47	Highly permeable porous YSZ hollow fiber membrane prepared using ethanol as external coagulant. Journal of Alloys and Compounds, 2010, 494, 366-371.	2.8	37
48	Co-production of hydrogen and carbon nanotubes on nickel foam via methane catalytic decomposition. Applied Surface Science, 2016, 369, 299-307.	3.1	37
49	Asymmetric porous cordierite hollow fiber membrane for microfiltration. Journal of Alloys and Compounds, 2009, 487, 631-638.	2.8	36
50	Synthesis and sintering of Gd-doped CeO2 electrolytes with and without 1 at.% CuO dopping for solid oxide fuel cell applications. International Journal of Hydrogen Energy, 2011, 36, 5054-5066.	3.8	36
51	Preparation of microfiltration membrane supports using coarse alumina grains coated by nano TiO2 as raw materials. Journal of the European Ceramic Society, 2014, 34, 4355-4361.	2.8	35
52	Cost-effective macro-porous mullite-corundum ceramic membrane supports derived from the industrial grade powder. Journal of Alloys and Compounds, 2009, 477, 350-356.	2.8	34
53	A cathode-supported SOFC with thin Ce0.8Sm0.2O1.9 electrolyte prepared by a suspension spray. Journal of Alloys and Compounds, 2008, 465, 285-290.	2.8	33
54	An anode-supported micro-tubular solid oxide fuel cell with redox stable composite cathode. International Journal of Hydrogen Energy, 2010, 35, 8654-8662.	3.8	33

#	Article	IF	CITATIONS
55	A high performance Ru–ZrO2/carbon nanotubes–Ni foam composite catalyst for selective CO methanation. Journal of Power Sources, 2013, 242, 132-136.	4.0	33
56	Scalable robust nano-porous Zr-based MOF adsorbent with high-capacity for sustainable water purification. Separation and Purification Technology, 2022, 288, 120620.	3.9	32
57	Facile synthesis of Co(OH)2 modified TiO2 nanocomposites with enhanced photocatalytic H2 evolution activity. Materials Letters, 2015, 138, 56-59.	1.3	31
58	Stable Zr-Based Metal–Organic Framework Nanoporous Membrane for Efficient Desalination of Hypersaline Water. Environmental Science & Technology, 2021, 55, 14917-14927.	4.6	31
59	Dual-production of nickel foam supported carbon nanotubes and hydrogen by methane catalytic decomposition. International Journal of Hydrogen Energy, 2012, 37, 12307-12316.	3.8	30
60	Electro-Enhanced Separation of Microsized Oil-in-Water Emulsions via Metallic Membranes: Performance and Mechanistic Insights. Environmental Science & Technology, 2022, 56, 4518-4530.	4.6	30
61	Stable, easily sintered Ca–Zn-doped YCrO3 as novel interconnect materials for co-fired yttrium-stabilized zirconia-based solid oxide fuel cells. Journal of Power Sources, 2009, 188, 483-488.	4.0	29
62	Evaluation of hydrogen permeation properties of Ni–Ba(Zr0.7Pr0.1Y0.2)O3â^`δ cermet membranes. International Journal of Hydrogen Energy, 2014, 39, 11683-11689.	3.8	25
63	Cost-effective tubular cordierite micro-filtration membranes processed by co-sintering. Journal of Alloys and Compounds, 2009, 477, L35-L40.	2.8	24
64	A high stability Ni–La 0.5 Ce 0.5 O 2â~'δ asymmetrical metal-ceramic membrane for hydrogen separation and generation. Journal of Power Sources, 2015, 281, 417-424.	4.0	24
65	Highly permeable and highly selective ultrathin film composite polyamide membranes reinforced by reactable polymer chains. Journal of Colloid and Interface Science, 2019, 552, 418-425.	5.0	24
66	Electrically conductive hydrophobic membrane cathode for membrane distillation with super anti-oil-fouling capability: Performance and mechanism. Desalination, 2021, 516, 115199.	4.0	24
67	Low-temperature protonic ceramic membrane fuel cells (PCMFCs) with SrCo0.9Sb0.1O3â^î´ cubic perovskite cathode. Journal of Power Sources, 2008, 185, 937-940.	4.0	23
68	Improvement of the performances of tubular solid oxide fuel cells by optimizing co-sintering temperature of the NiO/YSZ anode-YSZ electrolyte double layers. Journal of Power Sources, 2007, 171, 495-498.	4.0	22
69	Low temperature sintering ability and electrical conductivity of SOFC interconnect material La0.7Ca0.3Cr0.97O3. Journal of Alloys and Compounds, 2009, 468, 499-504.	2.8	21
70	Construction of Ru/Ni-Al-oxide/Ni-foam monolithic catalyst for deep-removing CO in hydrogen-rich gas via selective methanation. Fuel Processing Technology, 2016, 148, 367-371.	3.7	21
71	Superhydrophobic Carbon Nanotube Network Membranes for Membrane Distillation: High-Throughput Performance and Transport Mechanism. Environmental Science & Technology, 2022, 56, 5775-5785.	4.6	21
72	Simulation Study on Direct Contact Membrane Distillation Modules for High-Concentration NaCl Solution. Membranes, 2020, 10, 179.	1.4	20

#	Article	IF	CITATIONS
73	Adsorption of Low Concentration Formaldehyde in Air Using Ethylene-Diamine-Modified Diatomaceous Earth. Aerosol and Air Quality Research, 2015, 15, 1652-1661.	0.9	20
74	Influence of Cr deficiency on sintering character and properties of SOFC interconnect material La0.7Ca0.3Cr1â^xO3â^l´. Materials Research Bulletin, 2008, 43, 2607-2616.	2.7	19
75	Incorporation of zinc for fabrication of low-cost spinel-based composite ceramic membrane support to achieve its stabilization. Journal of Hazardous Materials, 2015, 287, 188-196.	6.5	18
76	Combustion synthesis and characterization of Cu–Sm co-doped CeO2 electrolytes. Journal of the European Ceramic Society, 2011, 31, 2365-2376.	2.8	17
77	Fabrication of dense LaCrO3-based interconnect thin membrane on anode substrates by co-firing. Materials Research Bulletin, 2009, 44, 2127-2133.	2.7	16
78	BaZr0.1Ce0.7Y0.2O3â^δ proton-conducting electrolyte prepared by gel-casting for low-temperature solid oxide fuel cells. Journal of Alloys and Compounds, 2009, 474, 364-369.	2.8	16
79	A high-strength Sm-doped CeO2 oxide-ion conducting electrolyte membrane for solid oxide fuel cell application. RSC Advances, 2013, 3, 17395.	1.7	14
80	A chromium oxide solution modified lithium titanium oxide with much improved rate performance. Journal of Materials Chemistry A, 2013, 1, 15310.	5.2	14
81	Ceramic-Based Composite Membrane with a Porous Network Surface Featuring a Highly Stable Flux for Drinking Water Purification. Membranes, 2019, 9, 5.	1.4	14
82	Formation and quantification of peroxide anions in nanocages of 12CaO·7Al2O3. RSC Advances, 2013, 3, 18311.	1.7	13
83	Thermal Conversion of Hazardous Metal Copper via the Preparation of CuAl ₂ O ₄ Spinel-based Ceramic Membrane for Potential Stabilization of Simulated Copper-Rich Waste. ACS Sustainable Chemistry and Engineering, 2015, 3, 2611-2618.	3.2	13
84	Superhydrophilic spinel ceramic membranes for oily emulsion wastewater treatment. Journal of Water Process Engineering, 2021, 42, 102161.	2.6	13
85	Chlorideâ€Ionâ€Stabilized Strontium Mayenite: Expansion of Versatile Material Family. Journal of the American Ceramic Society, 2014, 97, 4037-4044.	1.9	12
86	Stable, easily sintered BaCe0.5Zr0.3Y0.16Zn0.04O3â^'δ electrolyte-based proton-conducting solid oxide fuel cells by gel-casting and suspension spray. Journal of Alloys and Compounds, 2009, 478, 590-593.	2.8	9
87	An anode-supported hollow fiber solid oxide fuel cell with (Pr0.5Nd0.5)0.7Sr0.3MnO3â^î^–YSZ composite cathode. Journal of Alloys and Compounds, 2010, 497, 386-389.	2.8	9
88	Development and evaluation of a ceramic diffusive layer based DGT technique for measuring organic micropollutants in seawaters. Environment International, 2021, 156, 106653.	4.8	8
89	Effect of CuO doping on sinterability, mechanical and electrical properties of Sm-doped CeO2 ceramic thick membrane solid electrolytes. Ceramics International, 2014, 40, 15545-15550.	2.3	7
90	Decorating Mg/Fe oxide nanotubes with nitrogen-doped carbon nanotubes. Journal of Alloys and Compounds, 2011, 509, 9372-9376.	2.8	5

#	Article	IF	CITATIONS
91	Mechanical strengthening of Sm-doped CeO2 ceramics by 1mol% cobalt oxide for solid oxide fuel cell application. Journal of Power Sources, 2011, 196, 8402-8405.	4.0	5
92	Application of surface complexation modeling on modification of hematite surface with cobalt cocatalysts: a potential tool for preparing homogeneously distributed catalysts. RSC Advances, 2015, 5, 67700-67705.	1.7	5
93	Efficient Reduction of Low-Concentration NO via Dendritically Channeled Solid Oxide Cells. ACS Applied Energy Materials, 2021, 4, 6968-6974.	2.5	5
94	PVA-assisted synthesis and characterization of nano-crystalline La3+ and Mg2+ co-doped CeO2 electrolyte for intermediate-temperature solid oxide fuel cells. Ionics, 2013, 19, 343-349.	1.2	2
95	Strengthening of Gadoliniaâ€Doped Ceria (Ce _{0.80} Gd _{0.20} O _{2â€Î}) Thick Ceramic Membranes with Coâ€Doping of 1Âmol% CuO. International Journal of Applied Ceramic Technology, 2015, 12, 1027-1033.	1.1	0