
## Arash Khoshkbar-Sadigh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7854799/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | A New Five-Level Switched-Capacitor-Based Transformer-less Common-Grounded Grid-Tied Inverter.<br>IEEE Journal of Emerging and Selected Topics in Power Electronics, 2024, , 1-1.                                            | 5.4 | 8         |
| 2  | Analysis, Design, and Investigation of a Soft-Switched Buck Converter With High Efficiency. IEEE<br>Transactions on Power Electronics, 2022, 37, 6899-6912.                                                                  | 7.9 | 9         |
| 3  | ZVT High Step-Up Boost Converter With Wide Input Voltage and Wide Output Power for Renewable<br>Energy Applications. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, 10,<br>6057-6069.              | 5.4 | 6         |
| 4  | An Interleaved Soft Switched High Step-Up Boost Converter With High Power Density for Renewable<br>Energy Applications. IEEE Transactions on Power Electronics, 2022, 37, 13782-13798.                                       | 7.9 | 7         |
| 5  | Fault-Tolerant Method to Reduce Voltage Stress of Submodules in Postfault Condition for<br>Regenerative MMC-Based Drive. IEEE Transactions on Industrial Electronics, 2021, 68, 4718-4726.                                   | 7.9 | 19        |
| 6  | Active Voltage Balancing and Thermal Performance Analysis of Dual Flying-Capacitor Active<br>Neutral-Point-Clamped (DFC-ANPC) Inverters. IEEE Transactions on Industry Applications, 2021, 57,<br>637-649.                   | 4.9 | 11        |
| 7  | A Software-Based Fault-Tolerant Strategy for Modular Multilevel Converter Using DC Bus Voltage<br>Control. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9, 3436-3445.                            | 5.4 | 11        |
| 8  | Simple Active Capacitor Voltage Balancing Method Without Cost Function Optimization for<br>Seven-Level Full-Bridge Flying-Capacitor-Multicell Inverters. IEEE Transactions on Industry<br>Applications, 2021, 57, 1629-1643. | 4.9 | 12        |
| 9  | Power Loss Modeling and Thermal Comparison of SiC-MOSFET-Based 2-level Inverter and 3-level Flying Capacitor Multicell Inverter. , 2021, , .                                                                                 |     | 3         |
| 10 | A Fault-Tolerant Approach for Hybrid Modular Multilevel Converter Using Negative Voltage Levels. ,<br>2021, , .                                                                                                              |     | 0         |
| 11 | Multi-Input High Step-Up DC–DC Converter With Independent Control of Voltage and Power for<br>Hybrid Renewable Energy Systems. IEEE Transactions on Industrial Electronics, 2021, 68, 12079-12087.                           | 7.9 | 20        |
| 12 | Performance Analysis and Reliability Investigation of a High Step-up DC-DC Converter. , 2021, , .                                                                                                                            |     | 3         |
| 13 | A New Control Technique for Improved Active-Neutral-Point-Clamped (I-ANPC) Multilevel Converters<br>Using Logic-Equations Approach. IEEE Transactions on Industry Applications, 2020, 56, 488-497.                           | 4.9 | 18        |
| 14 | Phase-Disposition PWM Based Active Voltage Control of Seven-Level Nested Neutral-Point-Piloted (NNPP) Inverters. , 2020, , .                                                                                                 |     | 0         |
| 15 | Space Vector Modulation Scheme for Dual-Output Four-Leg Inverter. , 2020, , .                                                                                                                                                |     | 1         |
| 16 | An \$LC\$ Filter Design Based on the Maximum Ripple Current for Two-Level Inverters Controlled with a Bipolar Switching Scheme. , 2020, , .                                                                                  |     | 0         |
| 17 | Comparative and Quantitative analyze on Reliability of MMC-Based and CHB-Based Drive Systems<br>Considering Various Redundancy Strategies. , 2020, , .                                                                       |     | 10        |
| 18 | A Flexible Step-up Modular Multilevel Converter for High-Power Drive Application. , 2020, , .                                                                                                                                |     | 7         |

| #  | Article                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Flying-Capacitor Voltage-Balancing Control in Five-Level Active Neutral-Point-Clamped (A-NPC)<br>Converters Using Phase-Disposition PWM. , 2020, , .                                                                                           |     | 2         |
| 20 | Multiple Zero-Sequence Harmonic Injection Method using Optimized Coefficients. , 2020, , .                                                                                                                                                     |     | 0         |
| 21 | A New Structure of Bidirectional DC-DC Converter for Electric Vehicle Applications. , 2020, , .                                                                                                                                                |     | 8         |
| 22 | Analytical Approach to Calculate Inductor Current Ripple Cancellation in Two-Phase Interleaved<br>Single-phase Inverter. , 2020, , .                                                                                                           |     | 3         |
| 23 | Dynamic Voltage Restorer Controlled with Energy Minimized Compensation Method Based on Double<br>Flying Capacitor Multicell Inverter. , 2020, , .                                                                                              |     | 3         |
| 24 | Peer-to-Peer Operation Strategy of PV Equipped Office Buildings and Charging Stations Considering Electric Vehicle Energy Pricing. IEEE Transactions on Industry Applications, 2020, 56, 5848-5857.                                            | 4.9 | 59        |
| 25 | New auxiliary circuit for boost converter to achieve softâ€switching operation and zero input current ripple. IET Power Electronics, 2020, 13, 3910-3921.                                                                                      | 2.1 | 6         |
| 26 | Fundamental Circuit Topology of Duo-Active-Neutral-Point-Clamped, Duo-Neutral-Point-Clamped, and<br>Duo-Neutral-Point-Piloted Multilevel Converters. IEEE Journal of Emerging and Selected Topics in<br>Power Electronics, 2019, 7, 1224-1242. | 5.4 | 27        |
| 27 | A Unique Five-Level Converter Topology Comprising High-Frequency, Low-Frequency, and<br>Line-Frequency Switching Semiconductor Power Devices Without Flying-Capacitors and<br>Clamping-Diodes. , 2019, , .                                     |     | 0         |
| 28 | New Active Capacitor Voltage Balancing Method for Seven-Level Full-Bridge<br>Flying-Capacitor-Multicell (FCM) Inverters. , 2019, , .                                                                                                           |     | 1         |
| 29 | Thermal and Performance Comparison of Active Neutral-Point-Clamped (ANPC) and Dual<br>FlyingCapacitor ANPC (DFC-ANPC) Inverters. , 2019, , .                                                                                                   |     | 3         |
| 30 | Reduction of Switches and Flying Capacitors in a Hybrid Topology of the Stacked Multicell Converters. , 2019, , .                                                                                                                              |     | 0         |
| 31 | A New Three-Level Active Neutral-Point-Clamped (A-NPC) Multilevel Converter Topology. , 2019, , .                                                                                                                                              |     | 5         |
| 32 | Analytical Design of LC Filter Inductance for Two-Level Inverters Based on Maximum Ripple Current. ,<br>2019, , .                                                                                                                              |     | 5         |
| 33 | Duo-active-neutral-point-clamped multilevel converter: An exploration of the fundamental topology and experimental verification. , 2018, , .                                                                                                   |     | 6         |
| 34 | Logic-Equations-Based Modulation Technique for Natural Balance Control of an Improved<br>Active-Neutral-Point-Clamped (I-ANPC) Multilevel Converter. , 2018, , .                                                                               |     | 4         |
| 35 | Logic-Equations Method for Active Voltage-Control of a Flying-Capacitor Multilevel Converter<br>Topology. , 2018, , .                                                                                                                          |     | 1         |
| 36 | Control of a Modular-Concatenated-Cell (MCC) Multilevel Converter Topology Exploiting                                                                                                                                                          |     | 2         |

Logic-Equations Method. , 2018, , .

2

| #  | Article                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Modular-Concatenated-Cell (MCC) Multilevel Converter: A Novel Circuit Topology and Innovative<br>Logic-Equations-Based Control Technique. , 2018, , .                                            |     | 4         |
| 38 | Novel multiâ€ŧerminal MMCâ€based dc/dc converter for MVDC grid interconnection. IET Power<br>Electronics, 2018, 11, 1266-1276.                                                                   | 2.1 | 13        |
| 39 | Analytical exploration of conduction power losses for stacked multicell converters. , 2017, , .                                                                                                  |     | 1         |
| 40 | Logic-Form-Equation-Based Active Capacitor Voltage Balancing Control Technique for Stacked Multicell Converters. IEEE Transactions on Industrial Electronics, 2017, 64, 3456-3466.               | 7.9 | 18        |
| 41 | New Active Capacitor Voltage Balancing Method for Flying Capacitor Multicell Converter Based on Logic-Form-Equations. IEEE Transactions on Industrial Electronics, 2017, 64, 3467-3478.          | 7.9 | 62        |
| 42 | Medium-voltage DC grid connection using modular multilevel converter. , 2017, , .                                                                                                                |     | 8         |
| 43 | Closed-form equations for analytical exploration and comparison of switching power losses in flying capacitor multicell and active neutral-point-clamped multilevel converters. , 2016, , .      |     | 1         |
| 44 | New logic-form-equation based active voltage control for four-level flying capacitor multicell (FCM) converter. , 2016, , .                                                                      |     | 0         |
| 45 | New Flying-Capacitor-Based Multilevel Converter With Optimized Number of Switches and Capacitors for Renewable Energy Integration. IEEE Transactions on Energy Conversion, 2016, 31, 846-859.    | 5.2 | 47        |
| 46 | New active capacitor voltage balancing method for five-level stacked multicell converter. , 2016, , .                                                                                            |     | 3         |
| 47 | New flying-capacitor-based multilevel converter with optimized number of switches and capacitors controlled with a new logic-form-equation based active voltage balancing technique. , 2016, , . |     | 6         |
| 48 | Application of reduced stacked multicell converter in dual-function dynamic voltage restorer (DVR). , 2016, , .                                                                                  |     | 0         |
| 49 | Medium voltage dynamic voltage restorer (DVR) based on DFCM converter for power quality improvement. , 2016, , .                                                                                 |     | 3         |
| 50 | New configuration of dynamic voltage restorer for medium voltage application. , 2016, , .                                                                                                        |     | 2         |
| 51 | Analytical determination of conduction losses for modified flying capacitor multicell converters. , 2016, , .                                                                                    |     | 5         |
| 52 | Investigation of Conduction and Switching Power Losses in Modified Stacked Multicell Converters.<br>IEEE Transactions on Industrial Electronics, 2016, 63, 7780-7791.                            | 7.9 | 26        |
| 53 | Analytical determination of conduction power loss and investigation of switching power loss for modified flying capacitor multicell converters. IET Power Electronics, 2016, 9, 175-187.         | 2.1 | 19        |
| 54 | Dual Flying Capacitor Active-Neutral-Point-Clamped Multilevel Converter. IEEE Transactions on Power<br>Electronics, 2016, 31, 6476-6484.                                                         | 7.9 | 41        |

| #  | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Analytical Determination of Conduction and Switching Power Losses in Flying-Capacitor-Based Active<br>Neutral-Point-Clamped Multilevel Converter. IEEE Transactions on Power Electronics, 2016, 31,<br>5473-5494.                     | 7.9 | 96        |
| 56 | Analytic determination of conduction power losses in flying capacitor multicell power converter. , 2015, , .                                                                                                                          |     | 7         |
| 57 | Calculation of conduction power losses in double flying capacitor multicell converter. , 2015, , .                                                                                                                                    |     | 4         |
| 58 | Hybrid double flying capacitor multicell converter for renewable energy integration. , 2015, , .                                                                                                                                      |     | 2         |
| 59 | Selective harmonic elimination for extended cascaded multicell multilevel power converters. , 2015, , .                                                                                                                               |     | 4         |
| 60 | DSP-based digital control of a set of phase-shifted full-bridge DC-DC converters. , 2015, , .                                                                                                                                         |     | 3         |
| 61 | New Multilevel Converter Based on Cascade Connection of Double Flying Capacitor Multicell<br>Converters and Its Improved Modulation Technique. IEEE Transactions on Power Electronics, 2015, 30,<br>6568-6580.                        | 7.9 | 35        |
| 62 | Hybrid double flying capacitor multicell converter and its application in gridâ€ŧied renewable energy resources. IET Generation, Transmission and Distribution, 2015, 9, 947-956.                                                     | 2.5 | 22        |
| 63 | Active voltage balancing of five-level H-bridge flying capacitor multicell converter controlled with level-shifted-carrier PWM. , 2015, , .                                                                                           |     | 3         |
| 64 | A New Breed of Optimized Symmetrical and Asymmetrical Cascaded Multilevel Power Converters. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2015, 3, 1160-1170.                                                    | 5.4 | 50        |
| 65 | Enhanced double flying capacitor multicell power converter controlled with a new switching pattern. IET Power Electronics, 2015, 8, 2386-2395.                                                                                        | 2.1 | 9         |
| 66 | A New Family of Modular Multilevel Converter Based on Modified Flying-Capacitor Multicell<br>Converters. IEEE Transactions on Power Electronics, 2015, 30, 138-147.                                                                   | 7.9 | 128       |
| 67 | Active voltage balancing of reduced stacked multiceli multilevel power converter and its application in static VAR compensation. , 2014, , .                                                                                          |     | 1         |
| 68 | Reduced DC voltage source flying capacitor multicell multilevel inverter: analysis and implementation. IET Power Electronics, 2014, 7, 439-450.                                                                                       | 2.1 | 58        |
| 69 | Elimination of DC voltage sources and reduction of power switches voltage stress in stacked multicell converters: analysis, modeling, and implementation. International Transactions on Electrical Energy Systems, 2014, 24, 653-676. | 1.9 | 13        |
| 70 | DC (direct current) voltage source reduction in stacked multicell converter based energy systems.<br>Energy, 2012, 46, 649-663.                                                                                                       | 8.8 | 26        |
| 71 | Topologies and Control Strategies of Multilevel Converters. Green Energy and Technology, 2012, ,<br>311-340.                                                                                                                          | 0.6 | 13        |
| 72 | Flying Capacitors Reduction in an Improved Double Flying Capacitor Multicell Converter Controlled<br>by a Modified Modulation Method. IEEE Transactions on Power Electronics, 2012, 27, 3875-3887.                                    | 7.9 | 102       |

| #  | Article                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Voltage sag and swell compensation with DVR based on asymmetrical cascade multicell converter. , 2011, , .                                                                        |     | 13        |
| 74 | Double Flying Capacitor Multicell Converter Based on Modified Phase-Shifted Pulsewidth<br>Modulation. IEEE Transactions on Power Electronics, 2010, 25, 1517-1526.                | 7.9 | 179       |
| 75 | Unified power flow controller based on two shunt converters and a series capacitor. Electric Power Systems Research, 2010, 80, 1511-1519.                                         | 3.6 | 14        |
| 76 | New method for estimating flying capacitor voltages in stacked multicell and flying capacitor multicell converters. Journal of Zhejiang University: Science C, 2010, 11, 654-662. | 0.7 | 7         |
| 77 | Voltage flicker mitigation with dynamic voltage restorer. , 2010, , .                                                                                                             |     | 2         |
| 78 | Active power filter with new compensation principle based on synchronous reference frame. , 2009, , .                                                                             |     | 2         |
| 79 | A new 2-cell shunt active power filter with compensation principle based on synchronous reference frame. , 2009, , .                                                              |     | 2         |
| 80 | Stacked multicell converter based DVR with energy minimized compensation strategy. , 2009, , .                                                                                    |     | 12        |
| 81 | Flying capacitor multicell converter based dynamic voltage restorer. , 2009, , .                                                                                                  |     | 22        |
| 82 | Elimination of instantaneous backward mmf in single phase induction motors. , 2009, , .                                                                                           |     | 0         |
| 83 | A simple soft-switched buck converter without implementing auxiliary switch. Electrical Engineering, $\Omega = 1$                                                                 | 2.0 | 1         |