
Philippe Refait

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7854716/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structure of the Fe(II-III) layered double hydroxysulphate green rust two from Rietveld analysis. Solid State Sciences, 2003, 5, 327-334.	3.2	179
2	Characterisation of mackinawite by Raman spectroscopy: Effects of crystallisation, drying and oxidation. Corrosion Science, 2008, 50, 3247-3255.	6.6	153
3	Effect of orthophosphate on the oxidation products of Fe(II)-Fe(III) hydroxycarbonate: the transformation of green rust to ferrihydrite. Geochimica Et Cosmochimica Acta, 2001, 65, 1715-1726.	3.9	131
4	Corrosion and cathodic protection of carbon steel in the tidal zone: Products, mechanisms and kinetics. Corrosion Science, 2015, 90, 375-382.	6.6	119
5	The transformation of mackinawite into greigite studied by Raman spectroscopy. Journal of Raman Spectroscopy, 2011, 42, 496-504.	2.5	116
6	Formation of the Fe(II–III) hydroxysulphate green rust during marine corrosion of steel associated to molecular detection of dissimilatory sulphite-reductase. Corrosion Science, 2008, 50, 1099-1111.	6.6	112
7	Olive leaf extract as natural corrosion inhibitor for pure copper in 0.5 M NaCl solution: A study by voltammetry around OCP. Journal of Electroanalytical Chemistry, 2016, 769, 53-61.	3.8	90
8	Characterisation of calcareous deposits by electrochemical methods: role of sulphates, calcium concentration and temperature. Electrochimica Acta, 2004, 49, 2833-2839.	5.2	88
9	Microbiologically influenced corrosion of archaeological artefacts: characterisation of iron(II) sulfides by Raman spectroscopy. Journal of Raman Spectroscopy, 2010, 41, 1425-1433.	2.5	78
10	Corrosion of Carbon Steel in Marine Environments: Role of the Corrosion Product Layer. Corrosion and Materials Degradation, 2020, 1, 198-218.	2.4	74
11	Localised corrosion of carbon steel in NaHCO3/NaCl electrolytes: role of Fe(II)-containing compounds. Corrosion Science, 2006, 48, 709-726.	6.6	68
12	Influence of soil moisture on the corrosion processes of carbon steel in artificial soil: Active area and differential aeration cells. Electrochimica Acta, 2016, 213, 698-708.	5.2	66
13	On the bacterial communities associated with the corrosion product layer during the early stages of marine corrosion of carbon steel. International Biodeterioration and Biodegradation, 2015, 99, 55-65.	3.9	60
14	Effects of NO2â^' ions on localised corrosion of steel in NaHCO3+NaCl electrolytes. Electrochimica Acta, 2007, 52, 7599-7606.	5.2	59
15	Electrochemical formation and transformation of corrosion products on carbon steel under cathodic protection in seawater. Corrosion Science, 2013, 71, 32-36.	6.6	58
16	Synthesis of goethite from Fe(OH)2 precipitates: Influence of Fe(II) concentration and stirring speed. Journal of Physics and Chemistry of Solids, 2008, 69, 2124-2130.	4.0	54
17	Influence of soil moisture on the residual corrosion rates of buried carbon steel structures under cathodic protection. Electrochimica Acta, 2015, 176, 1410-1419.	5.2	52
18	Study of Fe(II) sulphides in waterlogged archaeological wood. Studies in Conservation, 2013, 58, 297-307.	1.1	35

PHILIPPE REFAIT

#	Article	IF	CITATIONS
19	Corrosion inhibition of copper in 0.5ÂM NaCl solutions by aqueous and hydrolysis acid extracts of olive leaf. Journal of Electroanalytical Chemistry, 2020, 859, 113834.	3.8	31
20	Influence of arsenate species on the formation of Fe(III) oxyhydroxides and Fe(II–III) hydroxychloride. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 332, 26-35.	4.7	20
21	Corrosion processes of carbon steel in argillite: Galvanic effects associated with the heterogeneity of the corrosion product layer. Electrochimica Acta, 2015, 182, 1019-1028.	5.2	16
22	Localized corrosion of carbon steel in seawater: Processes occurring in cathodic zones. Materials and Corrosion - Werkstoffe Und Korrosion, 2019, 70, 973-984.	1.5	14
23	Contribution of magnetic measurement methods to the analysis of iron sulfides in archaeological waterlogged woodâ€'iron assemblies. Microchemical Journal, 2019, 148, 10-20.	4.5	12
24	Long-term alteration processes of iron fasteners extracted from archaeological shipwrecks aged in biologically active waterlogged media. Corrosion Science, 2021, 181, 109231.	6.6	10
25	Corrosion of low alloy steel in stagnant artificial or stirred natural seawater: The role of Al and Cr. Materials and Corrosion - Werkstoffe Und Korrosion, 2019, 70, 985-995.	1.5	9
26	Galvanic corrosion in marine environments: Effects associated with the inversion of polarity of Zn/carbon steel couples. Materials and Corrosion - Werkstoffe Und Korrosion, 2019, 70, 950-961.	1.5	9
27	Prediction of Thermal Spray Coatings Performance in Marine Environments by Combination of Laboratory and Field Tests. Coatings, 2021, 11, 320.	2.6	8
28	Abiotically or microbially mediated transformations of magnetite by sulphide species: The unforeseen role of nitrate-reducing bacteria. Corrosion Science, 2018, 142, 31-44.	6.6	7
29	Cathodic protection of buried steel structures: Processes occurring at the steel/soil interface during wet/dry cycles. Materials and Corrosion - Werkstoffe Und Korrosion, 2020, 71, 451-463.	1.5	6
30	Mechanisms of localized corrosion of carbon steel associated with magnetite/mackinawite layers in a cement grout. Materials and Corrosion - Werkstoffe Und Korrosion, 2021, 72, 194-210.	1.5	6
31	Formation of Iron Sulfides on Carbon Steel in a Specific Cement Grout Designed for Radioactive Waste Repository and Associated Corrosion Mechanisms. Materials, 2021, 14, 3563.	2.9	6
32	Study of Overprotective-Polarization of Steel Subjected to Cathodic Protection in Unsaturated Soil. Materials, 2021, 14, 4123.	2.9	6
33	Post-treatment Study of Iron/Sulfur-containing Compounds in the Wreck of Lyon Saint-Georges 4 (Second Century ACE). Studies in Conservation, 2020, 65, 28-36.	1.1	5
34	Influence of Mg2+ Ions on the Formation of Green Rust Compounds in Simulated Marine Environments. Corrosion and Materials Degradation, 2021, 2, 46-60.	2.4	4
35	Influence of Organic Matter/Bacteria on the Formation and Transformation of Sulfate Green Rust. Corrosion and Materials Degradation, 2022, 3, 1-16.	2.4	3
36	On the Use of Voltammetry to Estimate the Effectiveness of Cathodic Protection of Buried Steel Structures. Journal of Materials Engineering and Performance, 2019, 28, 6042-6052.	2.5	2

#	Article	IF	CITATIONS
37	Assemblages bois-fer et biocorrosionÂ: étude des sulfures de fer formés en conditions anoxiques dans des bois d'épaves. Materiaux Et Techniques, 2016, 104, 512.	0.9	1