Jirapast Sichaem

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7854573/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Two new cytotoxic isomeric indole alkaloids from the roots of Nauclea orientalis. Fìtoterapìâ, 2010, 81, 830-833.	1.1	54
2	New furoquinoline alkaloids from the leaves of Evodia lepta. Fìtoterapìâ, 2014, 92, 270-273.	1.1	27
3	Synthesis, α-glucosidase inhibition, and molecular docking studies of novel N-substituted hydrazide derivatives of atranorin as antidiabetic agents. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127359.	1.0	25
4	A new dimeric aporphine from the roots of Artabotrys spinosus. Fìtoterapìâ, 2011, 82, 422-425.	1.1	23
5	A new dimeric resveratrol from the roots of Shorea roxburghii. Fìtoterapìâ, 2011, 82, 489-492.	1.1	23
6	Xanthones from the stems of Cratoxylum cochinchinense. Phytochemistry, 2012, 73, 148-151.	1.4	22
7	ldentification of highly potent α -glucosidase inhibitory and antioxidant constituents from <i>Zizyphus rugosa</i> bark: enzyme kinetic and molecular docking studies with active metabolites. Pharmaceutical Biology, 2017, 55, 1436-1441.	1.3	22
8	A new cytotoxic apotirucallane from the roots of Walsura trichostemon. Phytochemistry Letters, 2012, 5, 665-667.	0.6	21
9	A new cytotoxic 1-azaanthraquinone from the stems of Goniothalamus laoticus. Fìtoterapìâ, 2010, 81, 894-896.	1.1	19
10	Flavones from Combretum quadrangulare Growing in Vietnam and Their Alpha-Glucosidase Inhibitory Activity. Molecules, 2021, 26, 2531.	1.7	19
11	Tabebuialdehydes A–C, cyclopentene dialdehyde derivatives from the roots of Tabebuia rosea. Fìtoterapìâ, 2012, 83, 1456-1459.	1.1	18
12	Macrostachyols A–D, new oligostilbenoids from the roots of Gnetum macrostachyum. Fìtoterapìâ, 2011, 82, 460-465.	1.1	15
13	Anthraquinones and an iridoid glycoside from the roots of Morinda pandurifolia. Biochemical Systematics and Ecology, 2011, 39, 888-892.	0.6	13
14	New cytotoxic apotirucallanes from the leaves of Walsura trichostemon. Journal of Natural Medicines, 2014, 68, 436-441.	1.1	13
15	Alpha-Glucosidase Inhibitory Diterpenes from Euphorbia antiquorum Growing in Vietnam. Molecules, 2021, 26, 2257.	1.7	13
16	A new labdane-type diterpenoid from the leaves of <i>Vitex negundo</i> L. Natural Product Research, 2021, 35, 2329-2334.	1.0	12
17	Design and synthesis of new lupeol derivatives and their <i>α</i> -glucosidase inhibitory and cytotoxic activities. Natural Product Research, 2022, 36, 1-7.	1.0	12
18	A new ent-atisane diterpenoid from the aerial parts of <i>Euphorbia antiquorum</i> L Natural Product Research, 2021, 35, 312-317.	1.0	12

JIRAPAST SICHAEM

#	Article	IF	CITATIONS
19	Biological Activities of Lichen-Derived Monoaromatic Compounds. Molecules, 2022, 27, 2871.	1.7	11
20	Chemical constituents from the roots of Nauclea orientalis. Chemistry of Natural Compounds, 2012, 48, 827-830.	0.2	10
21	Chemical constituents from the roots of Uvaria rufa. Chemistry of Natural Compounds, 2011, 47, 474-476.	0.2	9
22	Schomburgkixanthone, a novel bixanthone from the twigs of <i>Garcinia schomburgkiana</i> . Natural Product Research, 2021, 35, 3613-3618.	1.0	9
23	Trichostemonoate, a new anticancer tirucallane from the stem bark of Walsura trichostemon. Natural Product Communications, 2014, 9, 1253-4.	0.2	9
24	Furoquinoline Alkaloids from the Leaves of Evodia Lepta as Potential Cholinesterase Inhibitors and their Molecular Docking. Natural Product Communications, 2015, 10, 1934578X1501000.	0.2	8
25	New diterpenoids from the stems of <i>Euphorbia antiquorum</i> growing in Vietnam. Natural Product Research, 2022, 36, 523-530.	1.0	8
26	Subnudatones A and B, new trans-decalin polyketides from the cultured lichen mycobionts of Pseudopyrenula subnudata. Fìtoterapìâ, 2020, 142, 104512.	1.1	8
27	Reticulatin, a novel C ₄₃ -spiroterpenoid from the lichen <i>Parmotrema reticulatum</i> growing in Vietnam. Natural Product Research, 2022, 36, 3705-3712.	1.0	8
28	α-Glucosidase Inhibitory and Antimicrobial Benzoylphloroglucinols from Garcinia schomburgakiana Fruits: In Vitro and In Silico Studies. Molecules, 2022, 27, 2574.	1.7	8
29	Chemical Constituents of the Roots of Morinda coreia. Chemistry of Natural Compounds, 2013, 49, 746-748.	0.2	7
30	Chemical Constituents of the Stems of Spatholobus parviflorus and Their Cholinesterase Inhibitory Activity. Chemistry of Natural Compounds, 2018, 54, 356-357.	0.2	7
31	29-Norlupane-1 <i>β</i> -hydroxy-3,20-dione, a new norlupane triterpenoid from the twigs and leaves of <i>Phyllanthus acidus</i> . Natural Product Research, 2021, 35, 3384-3389.	1.0	7
32	A new taraxerol derivative from the roots of Microcos tomentosa. Natural Product Communications, 2013, 8, 1371-2.	0.2	7
33	A novel pyrrole alkaloid from the fruit peels of <i>Strychnos nux</i> - <i>blanda</i> . Natural Product Research, 2017, 31, 149-154.	1.0	6
34	Caloinophyllin A, a new chromanone derivative from <i>Calophyllum inophyllum</i> roots. Natural Product Research, 2018, 32, 2535-2541.	1.0	6
35	Hopane-6 <i>α</i> ,16 <i>α</i> ,22-triol: A New Hopane Triterpenoid from the Lichen <i>Parmotrema sancti-angelii</i> . Natural Product Communications, 2019, 14, 1934578X1985820.	0.2	6
36	Chemical Constituents of the Stem Bark of Bombax ceiba. Chemistry of Natural Compounds, 2020, 56, 909-911.	0.2	6

JIRAPAST SICHAEM

#	Article	IF	CITATIONS
37	A new eremophilane-sesquiterpene from the cultured lichen mycobiont of <i>Graphis</i> sp. Natural Product Research, 2022, 36, 319-325.	1.0	6
38	Identification of Highly Potent <i>α</i> â€Glucosidase Inhibitors from <i>Artocarpus integer</i> and Molecular Docking Studies. Chemistry and Biodiversity, 2021, 18, e2100499.	1.0	6
39	A New Cytotoxic Tirucallane from the Twigs of <i>Walsura trichostemon</i> . Natural Product Communications, 2014, 9, 1934578X1400900.	0.2	5
40	A new diterpenoid from the leaves of Phyllanthus acidus. Natural Product Research, 2020, , 1-7.	1.0	5
41	Bougainvinones N P, three new flavonoids from Bougainvillea spectabilis. Fìtoterapìâ, 2021, 149, 104832.	1.1	5
42	Chemical Constituents of the Roots of Zizyphus rugosa. Chemistry of Natural Compounds, 2013, 49, 767-768.	0.2	4
43	Non-redox Lipoxygenase Inhibitors from Nauclea orientalis. Natural Product Communications, 2018, 13, 1934578X1801300.	0.2	4
44	Dilatatone, a new chlorinated compound from <i>Parmotrema dilatatum</i> . Natural Product Research, 2021, 35, 3608-3612.	1.0	4
45	Berectones A and B: Two new rotenoids from the aerial parts of <i>Boerhavia erecta</i> . Natural Product Research, 2022, 36, 5155-5160.	1.0	4
46	Biological activities of Peristrophe bivalvis extracts: promising potential for anti-snake venoms against Naja kaouthia and TrimeresurusÂalbolabris venoms. Natural Product Research, 2016, 30, 697-699.	1.0	3
47	Bioactive Aporphine Alkaloids from the Roots of <i>Artabotrys spinosus</i> : Cholinesterase Inhibitory Activity and Molecular Docking Studies. Natural Product Communications, 2018, 13, 1934578X1801301.	0.2	3
48	A new diphenyl ether from <i>Parmotrema indicum</i> Hale growing in Vietnam. Natural Product Research, 2022, 36, 4879-4885.	1.0	3
49	Norquandrangularic acid D, a new trinorcycloartane isolated from the leaves of <i>Combretum quadrangulare</i> . Journal of Asian Natural Products Research, 2022, 24, 691-696.	0.7	3
50	Cycloartanes from leaves of <i>Combretum quadrangulare</i> growing in Vietnam. Natural Product Research, 2022, , 1-8.	1.0	3
51	New Derivatives of Lupeol and Their Biological Activity. MolBank, 2021, 2021, M1306.	0.2	3
52	New Flavonoid Derivatives from Melodorum fruticosum and Their α-Glucosidase Inhibitory and Cytotoxic Activities. Molecules, 2022, 27, 4023.	1.7	3
53	A New Taraxerol Derivative from the Roots of <i>Microcos Tomentosa</i> . Natural Product Communications, 2013, 8, 1934578X1300801.	0.2	2
54	A New Cytotoxic Phenolic Derivative from the Roots of <i>Antidesma Acidum</i> . Natural Product Communications, 2013, 8, 1934578X1300800.	0.2	2

JIRAPAST SICHAEM

#	Article	IF	CITATIONS
55	Trichostemonoate, a New Anticancer Tirucallane from the Stem Bark of Walsura trichostemon. Natural Product Communications, 2014, 9, 1934578X1400900.	0.2	2
56	A New Non-glucosidic Iridoid from the Roots of Strychnos nux-blanda. Natural Product Communications, 2016, 11, 1934578X1601100.	0.2	2
57	Pterocarpans and Isoflavones from the Heartwood of Pterocarpus indicus. Chemistry of Natural Compounds, 2019, 55, 121-123.	0.2	2
58	Manilkzapotane, a novel dimeric alkylresorcinol derivative from the stem bark of <i>Manilkara zapota</i> . Journal of Asian Natural Products Research, 2021, 23, 1093-1099.	0.7	2
59	Design, modification of phyllanthone derivatives as anti-diabetic and cytotoxic agents. Natural Product Research, 2022, 36, 371-378.	1.0	2
60	Telosmoside A ₂₁ , a new steroid glycoside from the roots of <i>Jasminanthes tuyetanhiae</i> . Natural Product Research, 2022, 36, 348-355.	1.0	2
61	A New Coumarin from the Stems of Pterocarpus indicus. Natural Product Communications, 2016, 11, 1287-1288.	0.2	2
62	Chemical Constituents of the Roots of Clerodendrum paniculatum. Chemistry of Natural Compounds, 2014, 50, 950-951.	0.2	1
63	Lindermyrrhin, a novel 3,4-dihydroisocoumarin from Lindera myrrha roots. Natural Product Research, 2021, 35, 1122-1126.	1.0	1
64	αâ€Glucosidase Inhibition by Usnic Acid Derivatives. Chemistry and Biodiversity, 2021, 18, e2000906.	1.0	1
65	Chemical Constituents of the Leaves of Polyscias fruticosa. Chemistry of Natural Compounds, 2021, 57, 1125-1127.	0.2	1
66	Indicuen, a new hopane from <i>Parmotrema indicum</i> Hale growing in Vietnam. Natural Product Research, 2023, 37, 1284-1291.	1.0	1
67	Synthesis and α-Glucosidase Inhibitory Activity of Ursolic Acid, Lupeol, and Betulinic Acid Derivatives. Chemistry of Natural Compounds, 2021, 57, 1038-1041.	0.2	1
68	Two new phenolic compounds from <i>Boerhavia erecta</i> collected in Vietnam. Natural Product Research, 0, , 1-8.	1.0	1
69	Chemical Constituents of the Leaves of Artocarpus integer. Chemistry of Natural Compounds, 0, , .	0.2	1
70	A New Coumarin from the Stems of Pterocarpus indicus. Natural Product Communications, 2016, 11, 1934578X1601100.	0.2	0
71	Strychnuxinal, A New Alkaloid from <i>Strychnos nux-blanda</i> Fruits. Natural Product Communications, 2018, 13, 1934578X1801300.	0.2	0
72	Chemical Constituents from the Root Bark of <i>Calophyllum inophyllum</i> . Natural Product Communications, 2018, 13, 1934578X1801300.	0.2	0

#	Article	IF	CITATIONS
73	Two New Chromanone Acid Derivatives from Calophyllum inophyllum. Chemistry of Natural Compounds, 2021, 57, 265-268.	0.2	0
74	A New Rotenoid Derivative from the Aerial Part of Boerhavia erecta. Chemistry of Natural Compounds, 0, , .	0.2	0