List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/785438/publications.pdf Version: 2024-02-01

		126907	182427
247	4,511	33	51
papers	citations	h-index	g-index
252	252	252	1862
all docs	docs citations	times ranked	citing authors

YU ZODENKO

#	Article	IF	CITATIONS
1	The antisite LuAl defect-related trap in Lu3Al5O12:Ce single crystal. Physica Status Solidi (B): Basic Research, 2005, 242, R119-R121.	1.5	199
2	Single-crystalline films of Ce-doped YAG and LuAG phosphors: advantages over bulk crystals analogues. Journal of Luminescence, 2005, 114, 85-94.	3.1	172
3	Exciton and antisite defect-related luminescence in Lu3Al5O12 and Y3Al5O12 garnets. Physica Status Solidi (B): Basic Research, 2007, 244, 2180-2189.	1.5	149
4	Scintillation properties of Lu3Al5O12:Ce single-crystalline films. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2002, 486, 309-314.	1.6	107
5	Single crystalline film scintillators based on Ce- and Pr-doped aluminium garnets. Radiation Measurements, 2007, 42, 521-527.	1.4	92
6	Luminescence characteristics of Pb2+ centres in undoped and Ce3+-doped Lu3Al5O12 single-crystalline films and Pb2+→Ce3+ energy transfer processes. Journal of Luminescence, 2007, 127, 384-390.	3.1	73
7	Luminescence of F + and F centers in YAlO3. Optics and Spectroscopy (English Translation of Optika I) Tj ETQq1	1 0.78431 0.6	4 rgBT /Ovel
8	Luminescence and Tb3+–Ce3+–Eu3+ ion energy transfer in single-crystalline films of Tb3Al5O12:Ce,Eu garnet. Journal of Luminescence, 2008, 128, 652-660.	3.1	62
9	Luminescence of excitons and antisite defects in the phosphors based on garnet compounds. Radiation Measurements, 2004, 38, 677-680.	1.4	56
10	Luminescence properties of phosphors based on Tb3Al5O12 (TbAG) terbium-aluminum garnet. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2009, 106, 365-374.	0.6	56
11	Binding energies of Eu2+ and Eu3+ ions in β-Ca2SiO4 doped with europium. Optical Materials, 2013, 35, 2107-2114.	3.6	56
12	Growth peculiarities of the (, Yb, Tb, Eu–Y) single crystalline film phosphors by liquid phase epitaxy. Radiation Measurements, 2007, 42, 907-910.	1.4	55
13	Peculiarities of luminescence and scintillation properties of YAP:Ce and LuAP:Ce single crystals and single crystalline films. Radiation Measurements, 2007, 42, 528-532.	1.4	55
14	Aluminum and Gallium Substitution in Yttrium and Lutetium Aluminum–Gallium Garnets: Investigation by Single-Crystal NMR and TSL Methods. Journal of Physical Chemistry C, 2016, 120, 24400-24408.	3.1	51
15	Energy transfer to ions in single crystalline films. Radiation Measurements, 2007, 42, 648-651.	1.4	50
16	Formation of luminescent centers in CeO2 nanocrystals. Journal of Luminescence, 2014, 145, 61-64.	3.1	49
17	Luminescence of ions in single crystalline films. Radiation Measurements, 2007, 42, 882-886.	1.4	48
18	Luminescence of isoelectronic impurities and antisite defects in garnets. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 375-379.	0.8	46

#	Article	IF	CITATIONS
19	Paramagnetic impurity defects in LuAG:Ce thick film scintillators. Radiation Measurements, 2007, 42, 835-838.	1.4	46
20	Luminescence properties of Y3Al5O12:Ce nanoceramics. Journal of Luminescence, 2011, 131, 17-21.	3.1	45
21	Exciton-related luminescence in LuAG:Ce single crystals and single crystalline films. Physica Status Solidi (A) Applications and Materials Science, 2005, 202, 1113-1119.	1.8	44
22	The luminescence of CaWO4: Bi single crystals. Journal of Luminescence, 2006, 116, 43-51.	3.1	43
23	Scintillation and optical properties of YAG:Ce films grown by liquid phase epitaxy. Radiation Measurements, 2007, 42, 533-536.	1.4	42
24	Luminescence of F ⁺ and F centers in AI ₂ O ₃ -Y ₂ O ₃ oxide compounds. IOP Conference Series: Materials Science and Engineering, 2010, 15, 012060.	0.6	42
25	Scintillation and luminescent properties of undoped and Ce3+ doped Y2SiO5 and Lu2SiO5 single crystalline films grown by LPE method. Optical Materials, 2012, 34, 1969-1974.	3.6	41
26	High-perfomance Ce-doped multicomponent garnet single crystalline film scintillators. Physica Status Solidi - Rapid Research Letters, 2015, 9, 489-493.	2.4	41
27	Luminescence of Mn2+ ions in Tb3Al5O12 garnet. Journal of Luminescence, 2010, 130, 380-386.	3.1	40
28	Origin of Bi ³⁺ â€related luminescence centres in Lu ₃ Al ₅ O ₁₂ :Bi and Y ₃ Al ₅ O ₁₂ :Bi single crystalline films and the structure of their relaxed excited states. Physica Status Solidi (B): Basic Research, 2012, 249, 1039-1045.	1.5	40
29	Electronic structure of Ce3+ multicenters in yttrium aluminum garnets. Applied Physics Letters, 2013, 102, .	3.3	40
30	Mechanism of dissipation of the excitation energy in garnet oxides doped with rare-earth ions with 4f-5d transitions. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2000, 88, 551-553.	0.6	38
31	Growth and luminescent properties of Lu2SiO5 and Lu2SiO5:Ce single crystalline films. Optical Materials, 2011, 33, 846-852.	3.6	37
32	Epitaxial structures of garnets as scintillation detectors of ionizing radiation. Journal of Applied Spectroscopy, 1990, 52, 645-649.	0.7	35
33	Peculiarities of luminescent and scintillation properties of YAC:Ce phosphor prepared in different crystalline forms. Optical Materials, 2012, 34, 1314-1319.	3.6	35
34	The α-particle excited scintillation response of the liquid phase epitaxy grown LuAG:Ce thin films. Applied Physics Letters, 2008, 92, .	3.3	34
35	Luminescence of dimer lead centers in aluminium perovskites and garnets. Physica Status Solidi (B): Basic Research, 2009, 246, 1318-1326.	1.5	32
36	Photoluminescence of Lu3Al5O12:Bi and Y3Al5O12:Bi single crystalline films. Radiation Measurements, 2010, 45, 331-335.	1.4	31

#	Article	IF	CITATIONS
37	Luminescence spectroscopy of the Bi3+ single and dimer centers in Y3Al5O12:Bi single crystalline films. Journal of Luminescence, 2010, 130, 1963-1969.	3.1	31
38	Epitaxial growth of gadolinium and lutetium-based aluminum perovskite thin films for X-ray micro-imaging applications. CrystEngComm, 2016, 18, 608-615.	2.6	31
39	Optical, luminescence and scintillation characteristics of Bi-doped LuAG and YAG single crystalline films. Journal Physics D: Applied Physics, 2009, 42, 075501.	2.8	30
40	Growth and luminescent properties of scintillators based on the single crystalline films of Lu3â^`xGdxAl5O12:Ce garnet. Materials Research Bulletin, 2015, 64, 355-363.	5.2	30
41	Luminescence of Sc3+ and La3+ isoelectronic impurities in Lu3Al5O12 single-crystal films. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2006, 100, 572-580.	0.6	29
42	Luminescence and scintillation characteristics of YAG:Ce single crystalline films and single crystals. Radiation Measurements, 2010, 45, 389-391.	1.4	29
43	Luminescence of excitons and antisite defects in Lu3Al5O12:Ce single crystals and single-crystal films. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2005, 99, 923-931.	0.6	28
44	Synthesis and luminescent properties of prospective Ce3+ doped silicate garnet phosphors for white LED converters. Journal of Luminescence, 2017, 192, 328-336.	3.1	28
45	Rare-earth antisites in lutetium aluminum garnets: Influence on lattice parameter and Ce3+ multicenter structure. Optical Materials, 2014, 36, 1515-1519.	3.6	27
46	Scintillating screens based on the LPE grown Tb 3 Al 5 O 12 :Ce single crystalline films. Optical Materials, 2017, 65, 73-81.	3.6	27
47	New scintillation detectors based on oxide single crystal films for biological microtomography. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 505, 93-96.	1.6	26
48	Peculiarities of excited state structure and photoluminescence in Bi3+-doped Lu3Al5O12single-crystalline films. Journal of Physics Condensed Matter, 2009, 21, 415502.	1.8	26
49	Growth and luminescent properties of Lu2SiO5:Ce and (Lu1â^'xGdx)2SiO5:Ce single crystalline films. Journal of Crystal Growth, 2011, 337, 72-80.	1.5	26
50	Luminescence and energy transfer processes in Ce 3+ activated (Gd,Tb) 3 Al 5 O 12 single crystalline films. Journal of Luminescence, 2017, 188, 60-66.	3.1	26
51	Development of Composite Scintillators Based on Single Crystalline Films and Crystals of Ce ³⁺ -Doped (Lu,Gd) ₃ (Al,Ga) ₅ O ₁₂ Mixed Garnet Compounds. Crystal Growth and Design, 2018, 18, 1834-1842.	3.0	26
52	Ga for Al substitution effects on the garnet phase stability and luminescence properties of Gd3GaxAl5-xO12:Ce single crystals. Journal of Luminescence, 2019, 216, 116724.	3.1	26
53	Luminescence spectroscopy of excitons and antisite defects in Lu3Al5O12 single crystals and single-crystal films. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2008, 104, 75-87.	0.6	25
54	The luminescent and scintillation properties of YAlO ₃ and YAlO ₃ :Ce single crystalline films grown by liquid phase epitaxy from BaOâ€based flux. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 2586-2592.	1.8	25

#	Article	IF	CITATIONS
55	Growth and luminescence properties of Pr3+-doped single crystalline films of garnets and perovskites. Radiation Measurements, 2010, 45, 461-464.	1.4	25
56	Development of Novel UV Emitting Single Crystalline Film Scintillators. IEEE Transactions on Nuclear Science, 2010, 57, 1335-1342.	2.0	25
57	Time-resolved spectroscopy of exciton states in single crystals and single crystalline films of YAIO ₃ and YAIO ₃ : Ce. Journal Physics D: Applied Physics, 2011, 44, 315402.	2.8	25
58	Photoluminescence and excited state structure of Bi3+-related centers in Lu2SiO5:Bi single crystalline films. Journal of Luminescence, 2013, 134, 469-476.	3.1	25
59	Luminescent properties of Y 3 Al 5â^'x Ga x O 12 :Ce crystals. Journal of Luminescence, 2014, 156, 102-107.	3.1	25
60	Growth and characterization of large CeAlO3 perovskite crystals. Journal of Crystal Growth, 2015, 430, 116-121.	1.5	25
61	Growth and luminescent properties of scintillators based on the single crystalline films of (Lu,Gd)3(Al,Ga)5O12:Ce garnets. Journal of Luminescence, 2016, 169, 828-837.	3.1	25
62	Intrinsic and Ce3+-related luminescence of YAG and YAG:Ce single crystals, single crystalline films and nanopowders. Optical Materials, 2009, 31, 1845-1848.	3.6	23
63	Luminescence of Pb ²⁺ ions in YAG:Pb singleâ€crystalline films. Physica Status Solidi (B): Basic Research, 2008, 245, 1618-1622.	1.5	22
64	Shallow Traps in \${m YAlO}_{3}:{m Ce}\$ Single Crystal Perovskites. IEEE Transactions on Nuclear Science, 2008, 55, 1114-1117.	2.0	22
65	Luminescence characteristics of LuAC:Pr and YAC:Pr single crystalline films. Optical Materials, 2009, 31, 1805-1807.	3.6	22
66	Ultraviolet luminescence of single crystals and single-crystal films of YAlO3. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2004, 96, 70-76.	0.6	21
67	Single crystalline film screens for cathode-ray tubes: New life of television scanning optical microscopy. Radiation Measurements, 2007, 42, 933-936.	1.4	21
68	Growth and luminescence properties of single-crystalline films of RAIO3 (R = Lu, Lu-Y, Y, Tb) perovskite. Physics of the Solid State, 2009, 51, 1800-1808.	0.6	21
69	New type of scintillation detectors for biological, medical, and radiation monitoring applications. IEEE Transactions on Nuclear Science, 2004, 51, 1297-1303.	2.0	20
70	Intrinsic and \${m Ce}^{3+}\$- Related Luminescence of Single Crystals and Single Crystalline Films of YAP Perovskites: New Results. IEEE Transactions on Nuclear Science, 2008, 55, 1186-1191.	2.0	20
71	Single Crystalline Film Scintillators Based on the Orthosilicate, Perovskite and Garnet Compounds. IEEE Transactions on Nuclear Science, 2012, 59, 2260-2268.	2.0	20
72	Influence of lead-related centers on luminescence of Ce3+ and Pr3+ centers in single crystalline films of aluminium perovskites and garnets. Radiation Measurements, 2010, 45, 415-418.	1.4	19

#	Article	IF	CITATIONS
73	Scintillators Based on \${hbox{CdWO}}_{4}\$ and \${hbox{CdWO}}_{4}!!:!!{hbox{Bi}}\$ Single Crystalline Films. IEEE Transactions on Nuclear Science, 2012, 59, 2281-2285.	2.0	18
74	Lu2SiO5:Ce and Y2SiO5:Ce single crystals and single crystalline film scintillators: Comparison of the luminescent and scintillation properties. Radiation Measurements, 2013, 56, 84-89.	1.4	18
75	Growth and luminescent properties of Ce and Ce–Tb doped (Y,Lu,Gd)2SiO5:Ce single crystalline films. Journal of Crystal Growth, 2014, 401, 577-583.	1.5	18
76	Luminescent and scintillation properties of Bi3+ doped Y2SiO5 and Lu2SiO5 single crystalline films. Journal of Luminescence, 2014, 154, 525-530.	3.1	18
77	Epitaxial Growth of LuAG:Ce and LuAG:Ce,Pr Films and Their Scintillation Properties. IEEE Transactions on Nuclear Science, 2016, 63, 1726-1732.	2.0	18
78	Luminescence and energy transfer processes in (Lu,Tb)3Al5O12 single crystalline films doped with Ce3+. Journal of Luminescence, 2016, 173, 141-148.	3.1	18
79	Growth and luminescent properties of single crystalline films of Ce3+ doped Pr1â^'xLuxAlO3 and Gd1âr'xLuxAlO3 perovskites. Journal of Crystal Growth, 2017, 457, 220-226.	1.5	18
80	Luminescence of Ce3+ multicenters in Ca2+-Mg2+-Si4+ based garnet phosphors. Journal of Luminescence, 2018, 199, 245-250.	3.1	18
81	Intrinsic and defect-related luminescence of YAlO3 and LuAlO3 single crystals and films. Optical Materials, 2018, 86, 376-381.	3.6	18
82	Hydrogen peroxide sensing using Ce3+ luminescence of cerium oxide (CeO2-x) nanoparticles. Optical Materials, 2018, 85, 303-307.	3.6	18
83	Luminescence of Sc-related centers in single crystalline films of Lu3Al5O12 garnet. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 105-108.	0.8	17
84	Intrinsic luminescence of YAlO3 perovskites. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 963-967.	0.8	17
85	Intrinsic and \${m Ce}^{3+}\$-Related Luminescence in Single Crystalline Films and Single Crystals of LuAP and LuAP:Ce Perovskites. IEEE Transactions on Nuclear Science, 2008, 55, 1192-1196.	2.0	17
86	Lu 3 Al 5 O 12 -based materials for high 2D-resolution scintillation detectors. Proceedings of SPIE, 2009, , .	0.8	17
87	Luminescent and scintillation properties of Lu3Al5O12:Sc single crystal and single crystalline films. Optical Materials, 2012, 34, 2080-2085.	3.6	17
88	Comparative study of the luminescence of Y3Al5O12 nanoceramics and single crystals under excitation by synchrotron radiation. Optical Materials, 2013, 35, 2049-2052.	3.6	17
89	Scintillating Screens for Micro-Imaging Based on the Ce-Tb Doped LuAP Single Crystal Films. IEEE Transactions on Nuclear Science, 2014, 61, 433-438.	2.0	17
90	Epitaxial growth of single crystalline film phosphors based on the Ce ³⁺ -doped Ca ₂ YMgScSi ₃ O ₁₂ garnet. CrystEngComm, 2017, 19, 3689-3697.	2.6	17

#	Article	IF	CITATIONS
91	Luminescent spectroscopy of Eu2+ centers in CsBr:Eu single crystals at 10–550K. Journal of Luminescence, 2004, 106, 313-320.	3.1	16
92	Comparative study of the luminescence of Al2O3:Ti and Al2O3 crystals under VUV synchrotron radiation excitation. Optical Materials, 2013, 35, 2053-2055.	3.6	16
93	Development of scintillating screens based on the single crystalline films of Ce doped (Gd,Y)3(Al,Ga,Sc)5O12 multi-component garnets. Journal of Crystal Growth, 2014, 401, 532-536.	1.5	16
94	Epitaxial growth of single crystalline film scintillating screens based on Eu ³⁺ doped RAIO ₃ (R = Y, Lu, Gd, Tb) perovskites. CrystEngComm, 2018, 20, 937-945.	2.6	16
95	New silicate based thermographic phosphors Ca3Sc2Si3O12:Dy, Ca3Sc2Si3O12:Dy,Ce and their photoluminescence properties. Journal of Luminescence, 2018, 202, 13-19.	3.1	16
96	Epitaxial growth of composite scintillators based on Tb3Al5O12 : Ce single crystalline films and Gd3Al2.5Ga2.5O12 : Ce crystal substrates. CrystEngComm, 2018, 20, 3994-4002.	2.6	16
97	Intrinsic luminescence of Lu2SiO5 (LSO) and Y2SiO5 (YSO) orthosilicates. Journal of Luminescence, 2013, 137, 204-207.	3.1	15
98	Comparative study of the luminescence of Al2O3:C and Al2O3 crystals under synchrotron radiation excitation. Journal of Luminescence, 2013, 144, 41-44.	3.1	15
99	Exciton creation in LuAlO3 single crystalline film. Physica Status Solidi (B): Basic Research, 2006, 243, R60-R62.	1.5	14
100	Bi3+–Pr3+ energy transfer processes and luminescent properties of LuAG:Bi,Pr and YAG:Bi,Pr single crystalline films. Journal of Luminescence, 2013, 141, 137-143.	3.1	14
101	OSL dosimetric properties of cerium doped lutetium orthosilicates. Radiation Measurements, 2014, 71, 139-142.	1.4	14
102	Luminescent and scintillation properties of the Ce3+ doped Y3â^'Lu Al5O12:Ce single crystalline films. Journal of Luminescence, 2016, 169, 822-827.	3.1	14
103	A study of Mg2+ ions effect on atoms segregation, defects formation, luminescence and scintillation properties in Ce3+ doped Gd3Al2Ga3O12 single crystals. Journal of Alloys and Compounds, 2022, 905, 164154.	5.5	14
104	The role of Pb2+ ions in the luminescence of LuAG:Ce single crystalline films. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 797-800.	0.8	13
105	Time-resolved spectroscopy of intrinsic luminescence of Y3Ga5O12 and (LaLu)3Lu2Ga3O12 single crystals. Optical Materials, 2009, 31, 1835-1838.	3.6	13
106	LuAG:Pr, LuAG:La, and LuAP:Ce thin film scintillators for visualisation of x-ray images. , 2009, , .		13
107	Time-resolved luminescent spectroscopy of YAG:Ce single crystal and single crystalline films. Radiation Measurements, 2010, 45, 395-397.	1.4	13
108	High pressure spectroscopy study of SCF Tb ₃ Al ₅ O ₁₂ :Mn. Journal of Physics: Conference Series, 2010, 249, 012015.	0.4	13

#	Article	IF	CITATIONS
109	Photoluminescence and excited state structure in Bi3+-doped Y2SiO5 single crystalline films. Radiation Measurements, 2013, 56, 90-93.	1.4	13
110	Bi3+–Ce3+ energy transfer and luminescent properties of LuAG:Bi,Ce and YAG:Bi,Ce single crystalline films. Journal of Luminescence, 2013, 134, 539-543.	3.1	13
111	Multi-component Ce doped (Gd,Y,La,Lu)3(AlGaSc)5O12 garnets – A new story in the development of scintillating single crystalline film screens. Radiation Measurements, 2013, 56, 150-154.	1.4	13
112	Luminescent properties of Al2O3:Ce single crystalline films under synchrotron radiation excitation. Optical Materials, 2016, 59, 141-144.	3.6	13
113	LPE Growth of Single Crystalline Film Scintillators Based on Ce3+ Doped Tb3â^'xGdxAl5â^'yGayO12 Mixed Garnets. Crystals, 2017, 7, 262.	2.2	13
114	Composite scintillators based on the crystals and single crystalline films of LuAG garnet doped with Ce3+, Pr3+ and Sc3+ ions. Optical Materials, 2018, 84, 593-599.	3.6	13
115	Persistent photoconductivity in ZnO thin films grown on Si substrate by spin coating method. Optical Materials, 2019, 97, 109343.	3.6	13
116	Alpha and gamma spectroscopy of composite scintillators based on the LuAG:Pr crystals and single crystalline films of LuAG:Ce and (Lu,Gd,Tb)AG:Ce garnets. Optical Materials, 2019, 96, 109268.	3.6	13
117	LPE growth and study of the Ce ³⁺ incorporation in LuAlO ₃ :Ce single crystalline film scintillators. CrystEngComm, 2019, 21, 3313-3321.	2.6	13
118	Luminescence of excitons in single-crystal garnets. Optics and Spectroscopy (English Translation of) Tj ETQq0 0	0 rgBT /Ov 0.6	verlock 10 Tf 12
119	Scintillation properties of PbWO4 crystals doped with the rare-earth ions. Radiation Measurements, 2004, 38, 397-401.	1.4	12
120	Exciton Luminescence of YAlO[sub 3] Single Crystals and Single-Crystal Films. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2005, 98, 555.	0.6	12
121	Influence of thermal treatment and -radiation on absorption, luminescence and scintillation properties of single crystalline films. Radiation Measurements, 2007, 42, 557-560.	1.4	12
122	Luminescence and ESR characteristics of γ-irradiated Lu3Al5O12:Ce single crystalline film scintillators. Radiation Measurements, 2010, 45, 419-421.	1.4	12
123	Luminescent and scintillation properties of CsI:TI films grown by the liquid phase epitaxy method. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 2344-2350.	1.8	12
124	Composition engineering of single crystalline films based on the multicomponent garnet compounds. Optical Materials, 2016, 61, 3-10.	3.6	12
125	New Ce ³⁺ doped Ca ₂ YMgScSi ₃ O ₁₂ garnet ceramic phosphor for white LED converters. Physica Status Solidi - Rapid Research Letters, 2017, 11, 1700016.	2.4	12
126	Luminescent properties of undoped and Ce3+ doped crystals in Y2O3 Lu2O3 Al2O3 triple oxide system grown by micro-pulling-down method. Optical Materials, 2019, 89, 408-413.	3.6	12

#	Article	IF	CITATIONS
127	Micro-powder Ca3Sc2Si3O12:Ce silicate garnets as efficient light converters for WLEDs. Optical Materials, 2020, 107, 109978.	3.6	12
128	Composition engineering of Tb3-xGdxAl5-yGayO12:Ce single crystals and their luminescent, scintillation and photoconversion properties. Journal of Alloys and Compounds, 2020, 849, 155808.	5.5	12
129	Intrinsic and Dopant-Related Luminescence of Undoped and Tb Plus Tm Double-Doped Lithium Magnesium Phosphate (LiMgPO4, LMP) Crystals. Materials, 2020, 13, 2032.	2.9	12
130	LPE growth of Tb ₃ Al ₅ O ₁₂ :Ce single crystalline film converters for WLED application. CrystEngComm, 2021, 23, 3212-3219.	2.6	12
131	Composite Detectors Based on Single-Crystalline Films and Single Crystals of Garnet Compounds. Materials, 2022, 15, 1249.	2.9	12
132	Energy transfer between the dipole and aggregate centers in CsBr:Eu crystals. Radiation Measurements, 2007, 42, 672-674.	1.4	11
133	Luminescence of La3+ and Sc3+ impurity centers in YAlO3 single-crystalline films. Journal of Luminescence, 2008, 128, 595-602.	3.1	11
134	Novel UV-emitting single crystalline film phosphors grown by LPE method. Radiation Measurements, 2010, 45, 444-448.	1.4	11
135	Luminescence and scintillation properties of Y3Al5O12:Ce single crystals and single-crystal films. Physics of the Solid State, 2011, 53, 1620-1625.	0.6	11
136	Timeâ€resolved spectroscopy of excitonâ€related states in single crystals and single crystalline films of Lu ₃ Al ₅ O ₁₂ and Lu ₃ Al ₅ O ₁₂ :Ce. Physica Status Solidi (B): Basic Research, 2011, 248, 1505-1512.	1.5	11
137	STED properties of Ce^3+, Tb^3+, and Eu^3+ doped inorganic scintillators. Optics Express, 2017, 25, 1251.	3.4	11
138	Luminescent and scintillation properties of Ce 3+ doped Ca 2 RMgScSi 3 O 12 (R = Y, Lu) single crystalline films. Journal of Luminescence, 2018, 195, 362-370.	3.1	11
139	Composite thermoluminescent detectors based on the Ce3+ doped LuAG/YAG and YAG/LuAG epitaxial structures. Radiation Measurements, 2019, 128, 106124.	1.4	11
140	Liquid phase epitaxy growth of high-performance composite scintillators based on single crystalline films and crystals of LuAG. CrystEngComm, 2020, 22, 3713-3724.	2.6	11
141	Single crystalline thin film screens for cathode ray tubes: possibilities of application, peculiarities, and light parameters. , 1998, , .		10
142	Cathodoluminescence and scintillation characteristics of YAG:Ce crystals grown by horizontal directional crystallization in a protective atmosphere. Technical Physics Letters, 2009, 35, 964-966.	0.7	10
143	Luminescent properties of the Sc3+ doped single crystalline films of (Y,Lu,La)3(Al,Ga)5O12 multi-component garnets. Optical Materials, 2014, 36, 1760-1764.	3.6	10
144	Luminescent properties and energy transfer processes in YAG:Er single crystalline films. Journal of Luminescence, 2014, 154, 198-203.	3.1	10

#	Article	IF	CITATIONS
145	Scintillating Screens Based on the Single Crystalline Films of Multicomponent Garnets: New Achievements and Possibilities. IEEE Transactions on Nuclear Science, 2016, 63, 497-502.	2.0	10
146	Comparative study of the luminescent properties of oxide compounds under synchrotron radiation excitation: Lu2O3:Eu nanopowders, ceramics and films. Journal of Luminescence, 2018, 199, 461-464.	3.1	10
147	Novel All-Solid-State Composite Scintillators Based on the Epitaxial Structures of LuAG Garnet Doped With Pr, Sc, and Ce Ions. IEEE Transactions on Nuclear Science, 2018, 65, 2114-2119.	2.0	10
148	LPE Growth of Composite Thermoluminescent Detectors Based on the Lu3â^'xGdxAl5O12:Ce Single Crystalline Films and YAG:Ce Crystals. Crystals, 2020, 10, 189.	2.2	10
149	Single-crystalline oxide films of the Al 2 O 3 -Y 2 O 3 -R 2 O 3 system as optical sensors of various types of ionizing radiation: significant advantages over volume analogs. , 1997, , .		9
150	Luminescent properties and energy transfer processes in Ce–Tb doped single crystalline film screens of Lu-based silicate, perovskite and garnet compounds. Radiation Measurements, 2013, 56, 415-419.	1.4	9
151	Comparative study of TL and OSL properties of LSO and LSO:Ce single crystals andÂsingle crystalline films. Radiation Measurements, 2013, 56, 196-199.	1.4	9
152	Comparative analysis of the scintillation and thermoluminescent properties of Ce-doped LSO and YSO crystals and films. Optical Materials, 2014, 36, 1715-1719.	3.6	9
153	Luminescent properties of composite scintillators based on PPO and o-POPOP doped SiO 2 xerogel matrices. Journal of Luminescence, 2016, 179, 178-182.	3.1	9
154	Enhancement of up-conversion luminescence in Er,Ce doped Y3â^'Yb AG single crystalline films. Journal of Luminescence, 2016, 169, 816-821.	3.1	9
155	EPR study of Ce3+ luminescent centers in the Y2SiO5 single crystalline films. Optical Materials, 2017, 72, 833-837.	3.6	9
156	Luminescent properties of (La,Lu,Gd)3(Al,Sc,Ga)5O12:Ce mixed garnets under synchrotron radiation excitation. Journal of Luminescence, 2018, 199, 483-487.	3.1	9
157	High-pressure luminescence spectroscopy of EuAl2O4 phosphor. Radiation Measurements, 2007, 42, 652-656.	1.4	8
158	Growth and luminescent properties of TbAlO ₃ : Mn singleâ€crystalline films. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 967-973.	1.8	8
159	Luminescent properties of YAlO3:Mn single crystalline films. Optical Materials, 2012, 34, 1979-1983.	3.6	8
160	Luminescence of lead-related centres in single crystalline films of Lu2SiO5. Journal Physics D: Applied Physics, 2012, 45, 355304.	2.8	8
161	Luminescence properties and energy transfer processes in YAG:Yb,Er single crystalline films. Radiation Measurements, 2013, 56, 134-138.	1.4	8
162	Luminescent properties of Tb and Eu activated AxB1-xAlO3 (A = Y, Lu, Gd; B = Lu; x = 0, 0.5, 1) mixed oxides crystals prepared by micro-pulling-down method. Radiation Measurements, 2019, 126, 106140.	1.4	8

#	Article	IF	CITATIONS
163	Composite Color Converters Based on Tb ₃ Al ₅ O ₁₂ :Ce Singleâ€Crystalline Films and Y ₃ Al ₅ O ₁₂ :Ce Crystal Substrates. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100173.	2.4	8
164	Comparison of the luminescent properties of LuAG:Ce films grown by pulse laser deposition and liquid phase epitaxy methods using synchrotron radiation excitation. Optical Materials, 2020, 105, 109751.	3.6	8
165	Time-resolved luminescence of Eu2+-aggregate centers in CsBr crystals. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 535-538.	0.8	7
166	Growth and the luminescence properties of a lutetium gadolinium garnet doped with Ce3+ and Pr3+ ions. Physics of the Solid State, 2011, 53, 127-130.	0.6	7
167	Luminescence centers in Y ₃ Al ₅ O ₁₂ :La single crystals. Journal of Physics: Conference Series, 2011, 289, 012028.	0.4	7
168	Optical and Electrical Properties of ZnO Thin Films Grown by Sol-Gel Method. Solid State Phenomena, 0, 200, 14-21.	0.3	7
169	Comparison of the luminescent properties of LuAG:Pr nanopowders, crystals and films using synchrotron radiation. Optical Materials, 2017, 66, 271-276.	3.6	7
170	Luminescent and Scintillation Properties of CeAlO3 Crystals and Phase-Separated CeAlO3/CeAl11O18 Metamaterials. Crystals, 2019, 9, 296.	2.2	7
171	Effects of La doping on the crystal growth, phase stability and scintillation properties of Lu3Al5O12 single crystals. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2020, 261, 114677.	3.5	7
172	Scintillation and Energy-Storage Properties of Micro-Pulling-Down Grown Crystals of Sc3+- and La3+-Doped YAlO3 Perovskite. Crystals, 2020, 10, 385.	2.2	7
173	In silico Raman spectroscopy of YAlO3 single-crystalline film. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 231, 118111.	3.9	7
174	Antisite defect-related luminescence in (LaLu)3Lu2Ga3O12 garnet single crystals. Physica Status Solidi (B): Basic Research, 2007, 244, 3271-3278.	1.5	6
175	Thin imaging screens based on Ce-doped lutetium–aluminum garnets. Radiation Measurements, 2010, 45, 628-630.	1.4	6
176	Ce3+-doped crystalline garnet films – scintillation characterization using α-particle excitation. Radiation Measurements, 2010, 45, 369-371.	1.4	6
177	Luminescent properties of Mn-doped Y3Al5O12 single crystalline films. Optical Materials, 2014, 36, 1680-1684.	3.6	6
178	Thermoluminescent Properties of Undoped and Ce-Doped Lutetium Orthosilicate and Yttrium Orthosilicate Single Crystals and Single Crystalline Films Scintillators. IEEE Transactions on Nuclear Science, 2014, 61, 276-281.	2.0	6
179	Luminescent and scintillation properties of Sc 3+ and La 3+ doped Y 2 SiO 5 powders and single crystalline films. Journal of Luminescence, 2016, 179, 445-450.	3.1	6
180	New Efficient Scintillating and Photoconversion Materials Based on the Selfâ€Flux Grown Tb 3 Al 5 O 12 :Ce Single Crystal. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000327.	2.4	6

#	Article	IF	CITATIONS
181	Micropowder Ca2YMgScSi3O12:Ce Silicate Garnet as an Efficient Light Converter for White LEDs. Materials, 2022, 15, 3942.	2.9	6
182	Luminescence and origin of lead-related centers in single crystalline films of Y2SiO5 and Lu2SiO5. Radiation Measurements, 2013, 56, 124-128.	1.4	5
183	Luminescent and scintillation properties of YAG:Dy and YAG:Dy,Ce single crystalline films. Radiation Measurements, 2016, 90, 308-313.	1.4	5
184	Development of YAG:Ce,Mg and YAGG:Ce Scintillation Fibers. Springer Proceedings in Physics, 2017, , 114-128.	0.2	5
185	Electronic structure of Ce3+ in yttrium and lutetium orthoaluminate crystals and single crystal layers. Journal of Alloys and Compounds, 2017, 723, 157-163.	5.5	5
186	Thermoluminescent Properties of Cerium-Doped Lu2SO5 and Y2SiO5 Single Crystalline Films Scintillators Grown from PbO-B2O3 and Bi2O3 Fluxes. Crystals, 2018, 8, 120.	2.2	5
187	Raman spectroscopy of Ce3+ doped Lu3Al5O12 single crystalline films grown onto Y3Al5O12 substrate. Optical Materials: X, 2019, 3, 100029.	0.8	5
188	Radio-, Thermo- and Photoluminescence Properties of Lu2O3:Eu and Lu2O3:Tb Nanopowder and Film Scintillators. Crystals, 2019, 9, 148.	2.2	5
189	New types of composite scintillators based on the single crystalline films and crystals of Gd3(Al,Ga)5O12:Ce mixed garnets. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 264, 114909.	3.5	5
190	Crystallization and Investigation of the Structural and Optical Properties of Ce3+-Doped Y3â^'xCaxAl5â^'ySiyO12 Single Crystalline Film Phosphors. Crystals, 2021, 11, 788.	2.2	5
191	New efficient OSL detectors based on the crystals of Ce3+ doped Gd3Al5â^'xGaxO12 mixed garnet. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 273, 115448.	3.5	5
192	Luminescence of Cu ⁺ and Cu ²⁺ Ions in CsBr Crystals. Acta Physica Polonica A, 2010, 117, 199-202.	0.5	5
193	Scintillation characteristics of the single crystalline CdWO4 and Bi4Ge3O12 compounds doped with mercury-like ions. Semiconductor Physics, Quantum Electronics and Optoelectronics, 2000, 3, 207-212.	1.0	5
194	Application of scintillators based on single-crystalline Lu3Al5O12:Ce3+ films for radiation monitoring in biology and medicine. Semiconductor Physics, Quantum Electronics and Optoelectronics, 2000, 3, 213-218.	1.0	5
195	Luminescence of Pr3+ ions in Y3Al5?xGaxO12 solid solutions. Journal of Applied Spectroscopy, 1991, 55, 1100-1103.	0.7	4
196	Specific features of absorption and luminescence in CsBr: EuOBr crystals. Physics of the Solid State, 2004, 46, 1225-1230.	0.6	4
197	Growth and luminescent properties of Lu2SiO5and Lu2SiO5:Ce single crystalline films. IOP Conference Series: Materials Science and Engineering, 2010, 15, 012010.	0.6	4
198	Luminescent and scintillation properties of YAG:Tm and YAG:Ce,Tm single crystalline films. Optical Materials, 2014, 36, 1685-1687.	3.6	4

#	Article	IF	CITATIONS
199	Eu3+ multicenter formation and luminescent properties of Ca3Sc2Si3O12:Eu and Ca2YScMgSiO12:Eu single crystalline films. Optical Materials, 2019, 90, 70-75.	3.6	4
200	Study of the luminescence of Eu2+ and Eu3+ states in Ca3Ga2Ge3O12:Eu garnet using synchrotron radiation excitation. Optical Materials, 2020, 99, 109498.	3.6	4
201	Luminescent Properties of Nanopowder and Singleâ€Crystalline Films of TbAG:Ce Garnet. Physica Status Solidi (B): Basic Research, 2020, 257, 1900495.	1.5	4
202	Development of Composite Scintillators Based on the LuAG: Pr Single Crystalline Films and LuAG:Sc Single Crystals. Crystals, 2021, 11, 846.	2.2	4
203	Chapter 6 Luminescence of Pb- and Bi-Related Centers in Aluminum Garnet, Perovskite, and Orthosilicate Single-Crystalline Films. , 2017, , 227-302.		4
204	Comparison of the Luminescent Properties of Y ₃ Al ₅ O ₁₂ :Pr Crystals and Films. Acta Physica Polonica A, 2018, 133, 948-953.	0.5	4
205	Influence of structure defects upon the luminescence and thermostimulated effects in Gd3Ga5O12 crystals. Journal of Applied Spectroscopy, 1987, 47, 902-905.	0.7	3
206	Luminescence and storage properties of CsBr:Cu and CsBr:CuO crystals. Physica Status Solidi A, 2005, 202, 2537-2542.	1.7	3
207	Luminescence of aggregate centers in CsBr:Eu2+ single crystals. Journal of Applied Spectroscopy, 2006, 73, 406-410.	0.7	3
208	Growth and luminescent properties of (Lu–Y)AlO3:Ce single crystalline films. Radiation Measurements, 2013, 56, 159-162.	1.4	3
209	Novel Scintillating Screens Based on the Single Crystalline Films of Ce Doped Multi-Component \$({m) Tj ETQq1 1 Science, 2014, 61, 439-442.	l 0.78431 2.0	4 rgBT /Over 3
210	Luminescent and scintillation properties of the Pr3+ doped single crystalline films of Lu3Al5â^'xGaxO12 garnet. Radiation Measurements, 2016, 90, 183-187.	1.4	3
211	Fabrication and VUV luminescence of Lu2O3:Eu3+ (5Âat.%) nanopowders and transparent ceramics. Optical Materials, 2020, 101, 109730.	3.6	3
212	Bright exciton luminescence from La doped Lu3Al5O12 single crystals. Journal of Luminescence, 2021, 235, 118013.	3.1	3
213	Mn-Doped XAlO3 (X = Y, Tb) Single-Crystalline Films Grown onto YAlO3 Substrates: Raman Spectroscopy Study toward Visualization of Mechanical Stress. Journal of Physical Chemistry C, 2021, 125, 16279-16288.	3.1	3
214	Growth and luminescence of CsBr:Cu crystals. Crystallography Reports, 2006, 51, 329-333.	0.6	2
215	Luminescence of CsBr:Eu films grown by liquid-phase epitaxy. Journal of Applied Spectroscopy, 2006, 73, 211-215.	0.7	2
216	Time evolution of luminescence of Sr2SiO4:Eu2+. Journal of Physics Condensed Matter, 2013, 25, 425501.	1.8	2

#	Article	IF	CITATIONS
217	Comparison of the luminescent properties of Lu 3 Al 5 O 12 :Pr crystals and films under synchrotron radiation excitation. Journal of Luminescence, 2016, 179, 496-500.	3.1	2
218	Luminescent properties of Tm 3â^'x Lu x Al 5 O 12 :Ce single crystalline films. Optical Materials, 2017, 69, 444-448.	3.6	2
219	Epitaxial growth of single crystalline film scintillators based on the Pr ³⁺ doped solid solution of Lu ₃ Al _{5â^`x} Ga _x O ₁₂ garnet. CrystEngComm, 2017, 19, 7031-7040.	2.6	2
220	Epitaxial growth of single-crystalline-film scintillators based on Tb ³⁺ -doped and Tb ³⁺ –Ce ³⁺ -codoped Gd _{1–x} Lu _x AlO ₃ (<i>x</i> = 0–1) mixed perovskites. CrystEngComm, 2019, 21, 1433-1441.	2.6	2
221	Influence of high pressure on Eu3+ luminescence in epitaxial RAIO3 (R = Gd, Tb, Lu, Gd0,6Lu0,4, or Y) single crystalline films. Journal of Luminescence, 2020, 220, 116991.	3.1	2
222	MPD growth of single crystals of Ce3+ doped Gd3â^'xLuxAl5â^'yGayO12 mixed garnets and their luminescent, scintillation and photoconversion properties. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2020, 262, 114751.	3.5	2
223	Investigations of the influence of Am-241 photons on the measured alpha particle response of luminescent materials. Radiation Measurements, 2020, 134, 106331.	1.4	2
224	Composite Scintillators Based on the Films and Crystals of (Lu,Gd,La)2Si2O7 Pyrosilicates. IEEE Transactions on Nuclear Science, 2020, 67, 994-998.	2.0	2
225	New type of scintillation phoswich detectors for biological, medical and radiation monitoring applications. , 0, , .		1
226	Development of novel UV emitting single crystalline film scintillators. Journal of Physics: Conference Series, 2011, 289, 012029.	0.4	1
227	Luminescent and scintillation properties of CaWO <inf>4</inf> and CaWO <inf>4</inf> :Bi single crystalline films. , 2014, , .		1
228	Growth and luminescent properties of (Tb,Gd) <inf>3</inf> Al <inf>5</inf> O <inf>12</inf> :Ce single crystalline films. , 2014, , .		1
229	Luminescent, Scintillation, and Photoconversion Properties of Microâ€Pullingâ€Downâ€Grown Single Crystals of Ce 3+ â€Doped Gd 3â^ x Lu x Al 5â^ y Ga y O 12 Garnets. Physica Status Solidi (B): Basic Research, 2020, 257, 1900429.	1.5	1
230	Development of novel scintillation and photo-conversion materials based on Gd3(Sc,Al,Ga)5O12:Ce single crystals grown by micro-pulling-down method. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 273, 115395.	3.5	1
231	Novel composite color converters based on Tb1.5Gd1.5Al5O12:Ce single crystalline films and Y3Al5O12:Ce crystal substrates. CrystEngComm, 0, , .	2.6	1
232	Single crystalline imaging plates based on epitaxial and diffusion structures of alkali halide compounds. , 1998, , .		0
233	Doped by mercury-like ions KBr and KCl diffusion structures as imaging plates for digital radiography. , 2001, , .		0
234	Effect of isoelectronic impurities K+ and Iâ^' on luminescence of CsBr:Eu2+ crystals. Journal of Applied Spectroscopy, 2007, 74, 692-696.	0.7	0

#	Article	IF	CITATIONS
235	UV emitting single crystalline film scintillators grown by LPE method: current status and perspective. Materials Research Society Symposia Proceedings, 2011, 1341, 1.	0.1	0
236	LPE growth and luminescent properties of Ce doped A <inf>2S</inf> iO <inf>5</inf> :Ce (A = Lu, Gd, Y) single crystalline films. , 2012, , .		0
237	TSL properties of A <inf>2</inf> SiO <inf>5</inf> and A <inf>2</inf> SiO <inf>5</inf> :Ce (A=Y, Lu) single crystals and single crystalline films. , 2012, , .		Ο
238	Development of single crystalline film scintillators based on the Ce doped multi-component garnet compounds. , 2012, , .		0
239	Optical and electrical properties of ZnO thin films grown by sol-gel method. , 2012, , .		0
240	Growth, luminescent properties and energy transfer processes in (Lu,Tb) <inf>3</inf> Al <inf>5</inf> O <inf>12</inf> :Ce single crystalline films. , 2014, , .		0
241	Ce ³⁺ multicenters in selected garnets, perovskites, and glasses. , 2014, , .		Ο
242	Scintillating screens based on the single crystalline films of orthosilicates and multicomponent garnets. , 2014, , .		0
243	Thermoluminescence properties of LSO:Ce and YSO:Ce films grown from PbO and Bi <inf>2</inf> O <inf>3</inf> fluxes. , 2014, , .		Ο
244	Luminescent properties of LuAG:Yb and YAG:Yb single crystalline films grown by Liquid Phase Epitaxy method. Radiation Measurements, 2016, 90, 132-135.	1.4	0
245	Luminescent properties of Ce3+ doped LiLuP4O12 tetraphosphate under synchrotron radiation excitation. Journal of Luminescence, 2019, 210, 47-51.	3.1	0
246	10.1007/s11449-008-1011-3. , 2010, 104, 75.		0
247	Cerium-doped oxide single-crystal films for biological and radiation monitoring. , 0, , .		Ο