
S Saravanakumar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7854330/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Surfactants-assisted synthesis of ZnWO4 nanostructures: A view on photocatalysis, photoluminescence and electron density distribution analysis. Materials Characterization, 2020, 159, 110035.	4.4	41
2	Structural, optical and magnetic properties of Ni-doped CdS thin films prepared by CBD. Journal of Materials Science: Materials in Electronics, 2015, 26, 2059-2065.	2.2	35
3	Effect of sintering temperature on the magnetic properties and charge density distribution of nano-NiO. Chemical Papers, 2014, 68, .	2.2	34
4	Investigation on mesoporous bimetallic tungstate nanostructure for high-performance solid- state supercapattery. Journal of Alloys and Compounds, 2021, 875, 160066.	5.5	33
5	Structural, luminescence and EPR properties of deep red emitting MgY2Al4SiO12:Cr3+ garnet phosphor. Journal of Luminescence, 2020, 220, 116975.	3.1	30
6	Optical, electrical and microstructural studies of monoclinic CuO nanostructures synthesized by a sol–gel route. New Journal of Chemistry, 2014, 38, 2327.	2.8	28
7	Sm3+ induced-SrWO4 phosphor: analysis of photoluminescence and photocatalytic properties with electron density distribution studies. Journal of Materials Science: Materials in Electronics, 2020, 31, 8865-8883.	2.2	23
8	Analysis of structural, optical and charge density distribution studies on Zn1-xMnxS nanostructures. Physica B: Condensed Matter, 2018, 545, 134-140.	2.7	21
9	Growth and local structure analysis of ZnS nanoparticles. Physica B: Condensed Matter, 2010, 405, 3700-3703.	2.7	18
10	Enhanced Photocatalytic Decomposition Efficacy of Novel MgO NPs: Impact of Annealing Temperatures. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 3027-3036.	3.7	17
11	Structural, optical and charge density analysis of Al doped ZnO Materials. Journal of Materials Science: Materials in Electronics, 2019, 30, 2966-2974.	2.2	16
12	Structural, magnetic and charge-related properties of nano-sized cerium manganese oxide, a dilute magnetic oxide semiconductor. Materials Science in Semiconductor Processing, 2014, 17, 186-193.	4.0	15
13	Origin of ferroelectricity in orthorhombic <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi mathvariant="normal">LuFeO <mml:mn>3</mml:mn> </mml:mi </mml:msub> . Physical Review B. 2019, 100</mml:math 	3.2	14
14	Studies on Dilute Magnetic Semiconducting Co-Doped CdS Thin Films Prepared by Chemical Bath Deposition method. Journal of Materials Science: Materials in Electronics, 2017, 28, 12092-12099.	2.2	13
15	Sunlight-operable light converting smart windows for fertilizer-free plant growth enhancement. Nano Today, 2020, 34, 100918.	11.9	13
16	Enriched optoelectronic properties of cobalt-doped ZnO thin films for photodetector applications. Journal of Materials Science: Materials in Electronics, 2021, 32, 27060-27072.	2.2	12
17	Investigation of the van der Waals epitaxy gap in isostructural semiconducting germanium tellurides: HfGeTe 4 and ZrGeTe 4. Chinese Journal of Physics, 2016, 54, 668-677.	3.9	11
18	Charge correlation of ferroelectric and piezoelectric properties of (1 â^ x)(Na0.5Bi0.5)TiO3–xBaTiO3 lead-free ceramic solid solution. Journal of Materials Science: Materials in Electronics, 2017, 28, 9950-9963.	2.2	11

S SARAVANAKUMAR

#	Article	IF	CITATIONS
19	ZnWO ₄ :Eu ³⁺ phosphor with intense blue LED excitation: photoluminescence and electron density distribution analysis. Luminescence, 2021, 36, 99-109.	2.9	11
20	Red emitting Eu ³⁺ Âinduced SrWO ₄ materials: synthesis, structural, morphological and photoluminescence analysis. Physica Scripta, 2021, 96, 125817.	2.5	11
21	The analysis on the rearrangement of charge density distribution in response to magnetic behavior in Mn doped SnO2 nanoparticles. Physica B: Condensed Matter, 2012, 407, 302-310.	2.7	10
22	Solubility of Mn stabilized cubic zirconia nanostructures. Journal of Materials Science: Materials in Electronics, 2014, 25, 837-843.	2.2	9
23	Electronic structure, optical and chemical bonding properties of strontium doped Barium Titanate. Optik, 2020, 206, 163752.	2.9	9
24	Investigation on charge density, piezoelectric and ferroelectric properties of (1 â^ x)Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3 lead-free piezoceramics. Journal of Materials Science: Materials in Electronics, 2018, 29, 1198-1208.	2.2	8
25	Effect of neodymium doping in BaTiO3 ceramics on structural and ferroelectric properties. Journal of Materials Science: Materials in Electronics, 2020, 31, 1535-1546.	2.2	8
26	Influence of Eu3+-doped BaTiO3 phosphors on structural, optical and photoluminescence properties. Journal of Materials Science: Materials in Electronics, 2021, 32, 12253-12264.	2.2	8
27	Improved ammonia vapor sensing properties of Al-doped ZnO nanoparticles prepared by sol-gel process. Physica Scripta, 2021, 96, 085802.	2.5	7
28	Doping-induced electron density modification at lattice sites of ZnO:Ga nanostructures: effects on vibrational and optical properties. Journal of Materials Science, 2014, 49, 5529-5536.	3.7	6
29	Enhancement of intrinsic green emission in phase pure ZnO. Physica B: Condensed Matter, 2022, 644, 414155.	2.7	6
30	TiO ₂ Nanowires Grown from Nanoparticles: Structure and Charge Density Study. Journal of Nanoscience and Nanotechnology, 2013, 13, 6672-6678.	0.9	5
31	Structure and charge density of Ce doped gadolinium gallium garnet (GGG). Journal of Materials Science: Materials in Electronics, 2016, 27, 1920-1928.	2.2	5
32	Understanding electronic and magnetic transitions in ball milled diluted magnetic semiconductor Si1-xNix through experimental electron density distribution. Journal of Alloys and Compounds, 2017, 728, 887-895.	5.5	5
33	Three dimensional atomistic-scale electron density distribution analysis of ZnWO4: Sm phosphors. Optik, 2022, 249, 168169.	2.9	5
34	Room Temperature Magnetism and Experimental Electron Density Analysis of Co2+ Doped ZnFe2O4 Spinel Nanoferrites. Journal of Electronic Materials, 0, , 1.	2.2	5
35	Effect of preparation techniques on BaWO4: structural, morphological, optical and electron density distribution analysis. Journal of Materials Science: Materials in Electronics, 2021, 32, 1466-1475.	2.2	4
36	Preparation, electronic structure, and chemical bonding of lead-free (1Ââ~'Âx)(K0.5Bi0.5)TiO3-xBaTiO3 solid solution. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	2.3	2

S SARAVANAKUMAR

#	Article	IF	CITATIONS
37	The redistribution of charge density in CaF2:Yb3+. Journal of Materials Science: Materials in Electronics, 2015, 26, 6683-6691.	2.2	1
38	Comprehensive Study on Nebulizer-Spray-Pyrolyzed Eu-Doped PbS Thin Films for Optoelectronic Applications. Journal of Electronic Materials, 2020, 49, 5439-5448.	2.2	1
39	Outer-connected open packing sets in graphs. Asian-European Journal of Mathematics, 0, , 2250083.	0.5	1
40	Ho3+-Induced ZnO: Structural, Electron Density Distribution and Antibacterial Activity for Biomedical Application. Applied Biochemistry and Biotechnology, 2022, , 1.	2.9	1
41	Synthesis and characterisation of yittrium doped cerium oxide nanoparticles and their efficient antibacterial application invitro against gram-positive and gram-negative pathogens. Materials Today: Proceedings, 2022, , .	1.8	1
42	Synthesis and Electron Density Analysis of SnO ₂ Nano Particles. Materials Science Forum, 2011, 671, 121-129.	0.3	0
43	Rietveld analysis, optical, and ferroelectric properties of (1 â^` x)(Na0.97K0.03)NbO3–xBaTiO3 (x ceramics synthesized by solid-state reaction method. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	= 0.1 2.3	, 02) 0
44	Open packing bondage number of a graph. Discrete Mathematics, Algorithms and Applications, 2019, 11, 1950051.	0.6	0
45	Investigations on structural and electrical properties of conventional and microwave sintered BaTiO3 and Ba0.98Nd0.02TiO3 ceramics. Ferroelectrics, 2021, 572, 147-157.	0.6	0
46	Effect of BaSnO ₃ on structural and electrical properties of lead free Na _{0.5} Bi _{0.5} TiO ₃ ceramic solid solution. Physica Scripta, 2021, 96, 125805.	2.5	0
47	Charge Density Distribution and Bonding in Calcite. Materials Research Foundations, 2016, , 128-146.	0.3	0
48	Electronic Charge Density Distributions in Sb2O. Materials Research Foundations, 2016, , 93-107.	0.3	0
49	Electronic Bonding Analysis on Dilute Doping of Iron in Nickel Oxide Nano Crystals. Materials Research Foundations, 2016, , 69-80.	0.3	0