Jan C Axmacher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7854316/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The database of the <scp>PREDICTS</scp> (Projecting Responses of Ecological Diversity In Changing) Tj ETQq1 1	0.784314	l rgBT /Ove
2	Global warming, elevational ranges and the vulnerability of tropical biota. Biological Conservation, 2011, 144, 548-557.	4.1	185
3	Determinants of diversity in afrotropical herbivorous insects (Lepidoptera: Geometridae): plant diversity, vegetation structure or abiotic factors?. Journal of Biogeography, 2009, 36, 337-349.	3.0	91
4	Elevational species richness gradients in a hyperdiverse insect taxon: a global metaâ€study on geometrid moths. Global Ecology and Biogeography, 2017, 26, 412-424.	5.8	83
5	The role of pond management for biodiversity conservation in an agricultural landscape. Aquatic Conservation: Marine and Freshwater Ecosystems, 2012, 22, 626-638.	2.0	72
6	Diversity of geometrid moths (Lepidoptera: Geometridae) along an Afrotropical elevational rainforest transect. Diversity and Distributions, 2004, 10, 293-302.	4.1	69
7	Invasion pattern of Eupatorium adenophorum Spreng in southern China. Biological Invasions, 2010, 12, 1721-1730.	2.4	68
8	A Comparison of Terrestrial Arthropod Sampling Methods. Journal of Resources and Ecology, 2012, 3, 174-182.	0.4	67
9	Challenges in developing China's marine protected area system. Marine Policy, 2009, 33, 599-605.	3.2	54
10	Large woody debris "rewilding―rapidly restores biodiversity in riverine food webs. Journal of Applied Ecology, 2018, 55, 895-904.	4.0	54
11	Diverging diversity patterns of vascular plants and geometrid moths during forest regeneration on Mt Kilimanjaro, Tanzania. Journal of Biogeography, 2004, 31, 895-904.	3.0	50
12	Forest vegetation responses to climate and environmental change: A case study from Changbai Mountain, NE China. Forest Ecology and Management, 2011, 262, 2052-2060.	3.2	49
13	Nocturnal pollinators strongly contribute to pollen transport of wild flowers in an agricultural landscape. Biology Letters, 2020, 16, 20190877.	2.3	49
14	A Comparison of Manual and Automatic Moth Sampling Methods (Lepidoptera: Arctiidae, Geometridae) in a Rain Forest in Costa Rica. Environmental Entomology, 2006, 35, 757-764.	1.4	44
15	Effects of plant diversity, habitat and agricultural landscape structure on the functional diversity of carabid assemblages in the North China Plain. Insect Conservation and Diversity, 2015, 8, 163-176.	3.0	44
16	Changes of soil organic carbon in an intensively cultivated agricultural region: A denitrification–decomposition (DNDC) modelling approach. Science of the Total Environment, 2006, 372, 203-214.	8.0	43
17	Streamlining China's protected areas. Science, 2016, 351, 1160-1160.	12.6	43
18	Does China's increasing coupling of †̃urban population' and †̃urban area' growth indicators reflect a growing social and economic sustainability?. Journal of Environmental Management, 2022, 301, 113932.	7.8	40

#	Article	IF	CITATIONS
19	Buried alive: Aquatic plants survive in â€~ghost ponds' under agricultural fields. Biological Conservation, 2017, 212, 105-110.	4.1	37
20	Securing a Future for China's Wild Plant Resources. BioScience, 2011, 61, 720-725.	4.9	35
21	Relationships between Plant Diversity and the Abundance and α-Diversity of Predatory Ground Beetles (Coleoptera: Carabidae) in a Mature Asian Temperate Forest Ecosystem. PLoS ONE, 2013, 8, e82792.	2.5	35
22	A new role for pond management in farmland bird conservation. Agriculture, Ecosystems and Environment, 2016, 233, 179-191.	5.3	35
23	Different response patterns of epigaeic spiders and carabid beetles to varying environmental conditions in fields and semi-natural habitats of an intensively cultivated agricultural landscape. Agriculture, Ecosystems and Environment, 2018, 264, 54-62.	5.3	35
24	Coupled Hydrological/Hydraulic Modelling of River Restoration Impacts and Floodplain Hydrodynamics. River Research and Applications, 2016, 32, 1927-1948.	1.7	33
25	Pond management enhances the local abundance and species richness of farmland bird communities. Agriculture, Ecosystems and Environment, 2019, 273, 130-140.	5.3	33
26	Ponds as insect chimneys: Restoring overgrown farmland ponds benefits birds through elevated productivity of emerging aquatic insects. Biological Conservation, 2020, 241, 108253.	4.1	33
27	Ground beetle (Coleoptera: Carabidae) inventories: a comparison of light and pitfall trapping. Bulletin of Entomological Research, 2007, 97, 577-583.	1.0	32
28	Altitudinal diversity patterns of ground beetles (Coleoptera: Carabidae) in the forests of Changbai Mountain, Northeast China. Insect Conservation and Diversity, 2014, 7, 161-171.	3.0	32
29	Ground beetles (Coleoptera: Carabidae) in the intensively cultivated agricultural landscape of Northern China – implications for biodiversity conservation. Insect Conservation and Diversity, 2010, 3, 34-43.	3.0	31
30	Plant Invasions in China – Challenges and Chances. PLoS ONE, 2013, 8, e64173.	2.5	30
31	Disentangling effects of abiotic factors and biotic interactions on cross-taxon congruence in species turnover patterns of plants, moths and beetles. Scientific Reports, 2016, 6, 23511.	3.3	29
32	Spatial α-diversity patterns of diverse insect taxa in Northern China: Lessons for biodiversity conservation. Biological Conservation, 2011, 144, 2362-2368.	4.1	28
33	Contrasting effects of natural shrubland and plantation forests on bee assemblages at neighboring apple orchards in Beijing, China. Biological Conservation, 2019, 237, 456-462.	4.1	28
34	Diversity of carabids (Coleoptera, Carabidae) in the desalinized agricultural landscape of Quzhou county, China. Agriculture, Ecosystems and Environment, 2006, 113, 45-50.	5.3	25
35	Moths are strongly attracted to ultraviolet and blue radiation. Insect Conservation and Diversity, 2021, 14, 188-198.	3.0	25
36	Diversity patterns of ground beetles and understory vegetation in mature, secondary, and plantation forest regions of temperate northern <scp>C</scp> hina. Ecology and Evolution, 2015, 5, 531-542.	1.9	24

#	Article	IF	CITATIONS
37	Training future generations to deliver evidenceâ€based conservation and ecosystem management. Ecological Solutions and Evidence, 2021, 2, e12032.	2.0	23
38	Ground beetle assemblages in Beijing's new mountain forests. Forest Ecology and Management, 2014, 334, 369-376.	3.2	22
39	Biogeochemistry of an afrotropical montane rain forest on Mt. Kilimanjaro, Tanzania. Journal of Tropical Ecology, 2006, 22, 77-89.	1.1	21
40	Germination and emergence of <i>Ambrosia artemisiifolia</i> L. under changing environmental conditions in China. Plant Species Biology, 2011, 26, 125-133.	1.0	21
41	Net precipitation and soil water dynamics in clearings, old secondary and oldâ€growth forests in the montane rain forest belt of Mount Kilimanjaro, Tanzania. Hydrological Processes, 2011, 25, 418-428.	2.6	21
42	Ground Beetle (Coleoptera: Carabidae) Assemblages of Restored Semiâ€natural Habitats and Intensively Cultivated Fields in Northern China. Restoration Ecology, 2012, 20, 234-239.	2.9	21
43	Different radial growth responses to climate warming by two dominant tree species at their upper altitudinal limit on Changbai Mountain. Journal of Forestry Research, 2017, 28, 795-804.	3.6	21
44	Simulation of the hydrological impacts of climate change on a restored floodplain. Hydrological Sciences Journal, 2017, 62, 2482-2510.	2.6	20
45	Predictability of species diversity by family diversity across global terrestrial animal taxa. Global Ecology and Biogeography, 2020, 29, 629-644.	5.8	19
46	China's national nature reserve network shows great imbalances in conserving the country's mega-diverse vegetation. Science of the Total Environment, 2020, 717, 137159.	8.0	19
47	A novel â€~triple drawdown' method highlights deficiencies in invasive alien crayfish survey and control techniques. Journal of Applied Ecology, 2021, 58, 316-326.	4.0	19
48	Asymmetric warming significantly affects net primary production, but not ecosystem carbon balances of forest and grassland ecosystems in northern China. Scientific Reports, 2015, 5, 9115.	3.3	18
49	River–floodplain hydrology of an embanked lowland Chalk river and initial response to embankment removal. Hydrological Sciences Journal, 2013, 58, 627-650.	2.6	17
50	China draws lines to green future. Nature, 2016, 531, 305-305.	27.8	17
51	Differential radial growth response of three coexisting dominant tree species to local and largeâ€scale climate variability in a subtropical evergreen broadâ€eaved forest of China. Ecological Research, 2015, 30, 745-754.	1.5	16
52	Effects of Crofton weed Ageratina adenophora on assemblages of Carabidae (Coleoptera) in the Yunnan Province, South China. Agriculture, Ecosystems and Environment, 2008, 124, 173-178.	5.3	15
53	Largeâ€scale αâ€diversity patterns in plants and ground beetles (Coleoptera: Carabidae) indicate a high biodiversity conservation value of China's restored temperate forest landscapes. Diversity and Distributions, 2019, 25, 1613-1624.	4.1	15
54	Long-term effects of rainforest disturbance on the nutrient composition of throughfall, organic layer percolate and soil solution at Mt. Kilimanjaro. Science of the Total Environment, 2007, 376, 241-254.	8.0	14

#	Article	IF	CITATIONS
55	Field Margins as Rapidly Evolving Local Diversity Hotspots for Ground Beetles (Coleoptera: Carabidae) in Northern China. The Coleopterists Bulletin, 2006, 60, 135-143.	0.2	12
56	Effects of Plant Diversity, Vegetation Composition, and Habitat Type on Different Functional Trait Groups of Wild Bees in Rural Beijing. Journal of Insect Science, 2018, 18, .	1.5	12
57	Sustainability Dynamics of Traditional Villages: A Case Study in Qiannan Prefecture, Guizhou, China. Sustainability, 2020, 12, 314.	3.2	12
58	Geometrid moth assemblages reflect high conservation value of naturally regenerated secondary forests in temperate China. Forest Ecology and Management, 2016, 374, 111-118.	3.2	11
59	Sustainable wildlife extraction and the impacts of socio-economic change among the Kukama-Kukamilla people of the Pacaya-Samiria National Reserve, Peru. Oryx, 2020, 54, 260-269.	1.0	11
60	Environmental factors acting at multiple scales determine assemblages of insects and plants in agricultural mountain landscapes of northern China. Agriculture, Ecosystems and Environment, 2016, 224, 86-94.	5.3	10
61	Seasonal benefits of farmland pond management for birds. Bird Study, 2019, 66, 342-352.	1.0	9
62	The Chordâ€Normalized Expected Species Shared (CNESS)â€distance represents a superior measure of species turnover patterns. Methods in Ecology and Evolution, 2020, 11, 273-280.	5.2	9
63	High phylogenetic diversity is preserved in species-poor high-elevation temperate moth assemblages. Scientific Reports, 2016, 6, 23045.	3.3	8
64	Taxon- and functional group-specific responses of ground beetles and spiders to landscape complexity and management intensity in apple orchards of the North China Plain. Agriculture, Ecosystems and Environment, 2022, 323, 107700.	5.3	8
65	Productive Oilseed Rape Strips Supplement Seminatural Field-Margins in Promoting Ground-Dwelling Predatory Invertebrates in Agricultural Landscapes. Journal of Insect Science, 2019, 19, .	1.5	7
66	The taxon―and functional traitâ€dependent effects of field margin and landscape composition on predatory arthropods in wheat fields of the North China Plain. Insect Conservation and Diversity, 2020, 13, 328-339.	3.0	7
67	Once a pond in time: employing palaeoecology to inform farmland pond restoration. Restoration Ecology, 2021, 29, e13301.	2.9	7
68	Open anopy ponds benefit diurnal pollinator communities in an agricultural landscape: implications for farmland pond management. Insect Conservation and Diversity, 2021, 14, 307-324.	3.0	6
69	Improving the pollinator pantry: Restoration and management of open farmland ponds enhances the complexity of plant-pollinator networks. Agriculture, Ecosystems and Environment, 2021, 320, 107611.	5.3	6
70	Resilience of insect assemblages to climate change in mature temperate mountain forests of NE China. Journal of Insect Conservation, 2015, 19, 1163-1172.	1.4	5
71	Effects of farmland consolidation in southern China on wild bee species composition, nesting location and body size variations. Agricultural and Forest Entomology, 2022, 24, 371-379.	1.3	5
72	Buddhist monasteries facilitated landscape conservation on the Qinghai-Tibetan Plateau. Landscape Ecology, 2022, 37, 1559-1572.	4.2	5

#	Article	IF	CITATIONS
73	Perennial crops can complement semi-natural habitats in enhancing ground beetle (Coleoptera:) Tj ETQq1 1 0.784	1314 rgBT 6.3	/Qverlock
74	A second horizon scan of biogeography: Golden Ages, Midas touches, and the Red Queen. Frontiers of Biogeography, 2016, 8, .	1.8	3
75	Diversity and seasonal changes in carabid assemblages of a mature, secondary and plantation forest mosaic in the Zhangguangcai Mountains in northeastern China. Insect Conservation and Diversity, 2020, 13, 340-350.	3.0	3
76	The â€~Pritchard Trap': A novel quantitative survey method for crayfish. Ecological Solutions and Evidence, 2021, 2, e12070.	2.0	3
77	Estimating the number of species shared by incompletely sampled communities. Ecography, 2021, 44, 1098-1108.	4.5	3
78	Two new species of Feroperis Lafer (Carabidae, Pterostichus) from China, with a key to all known Chinese species in this subgenus. ZooKeys, 2018, 799, 95-114.	1.1	3
79	Geographical divergence of species richness and local homogenization of plant assemblages due to climate change in grasslands. Biodiversity and Conservation, 2022, 31, 797-810.	2.6	3
80	Changes in Assemblages and Diversity Patterns of Carabidae (Coleoptera) from 1997 to 2014 in a Desalinized, Intensively Cultivated Agricultural Landscape in Northern China. The Coleopterists Bulletin, 2018, 72, 597.	0.2	2
81	Habitat-GIS-based models for ground beetles (Coleoptera: Carabidae) distribution in agricultural landscape. , 2009, , .		1
82	Effects of forest disturbance and regeneration on net precipitation and soil water dynamics in tropical montane rain forest on Mount Kilimanjaro, Tanzania. , 2011, , 491-501.		1
83	Consequences of pond management for chironomid assemblages and diversity in English farmland ponds. Journal of Limnology, 2018, , .	1.1	1
84	Assessing methods to improve benthic fish sampling in a stony headwater stream. Ecological Solutions and Evidence, 2021, 2, e12111.	2.0	1
85	Diverse Locations and a Long History: Historical Context for Urban Leopards (Panthera pardus) in the Early Anthropocene From Seoul, Korea. Frontiers in Conservation Science, 2021, 2, .	1.9	1
86	Effects of Fire on the Diversity of Geometrid Moths on Mt. Kilimanjaro. , 2006, , 69-75.		0
87	New opportunities for biodiversity conservation in rural China?. , 2018, , .		0
88	Temporal-dynamics of ground beetles in <i>Larix gmelinii</i> forest in Greater Khingan Mountains, China. Acta Ecologica Sinica, 2021, 41, .	0.1	0