
Markus Ritter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7854273/publications.pdf Version: 2024-02-01

MADELIC DITTED

#	Article	lF	CITATIONS
1	Morphologic Parameters Relevant for Visual Outcome During Anti-Angiogenic Therapy of Neovascular Age-Related Macular Degeneration. Ophthalmology, 2014, 121, 1237-1245.	5.2	146
2	A Systematic Correlation between Morphology and Functional Alterations in Diabetic Macular Edema. , 2010, 51, 6710.		93
3	Influence of the Vitreomacular Interface onÂOutcomes of Ranibizumab Therapy inÂNeovascular Age-related Macular Degeneration. Ophthalmology, 2013, 120, 2620-2629.	5.2	74
4	A Systematic Correlation of Angiography and High-Resolution Optical Coherence Tomography in Diabetic Macular Edema. Ophthalmology, 2009, 116, 66-72.	5.2	70
5	Intraretinal cysts are the most relevant prognostic biomarker in neovascular age-related macular degeneration independent of the therapeutic strategy. British Journal of Ophthalmology, 2014, 98, 1629-1635.	3.9	67
6	Large-field high-speed polarization sensitive spectral domain OCT and its applications in ophthalmology. Biomedical Optics Express, 2012, 3, 2720.	2.9	46
7	In vivo identification of alteration of inner neurosensory layers in branch retinal artery occlusion. British Journal of Ophthalmology, 2012, 96, 201-207.	3.9	44
8	Performance of three biometry devices in patients with different grades of ageâ€related cataract. Acta Ophthalmologica, 2011, 89, e237-41.	1.1	35
9	Impact of Vitreomacular Adhesion on Ranibizumab Mono- and Combination Therapy for Neovascular Age-Related Macular Degeneration. American Journal of Ophthalmology, 2014, 158, 328-336.e1.	3.3	35
10	Evaluation of optical coherence tomography findings in age-related macular degeneration: a reproducibility study of two independent reading centres. British Journal of Ophthalmology, 2011, 95, 381-385.	3.9	34
11	Characterization of Stargardt Disease Using Polarization-Sensitive Optical Coherence Tomography and Fundus Autofluorescence Imaging. , 2013, 54, 6416.		33
12	Multi-modal adaptive optics system including fundus photography and optical coherence tomography for the clinical setting. Biomedical Optics Express, 2016, 7, 1783.	2.9	25
13	Identification and Quantification of the Angiofibrotic Switch in Neovascular AMD. , 2019, 60, 304.		24
14	EVALUATION OF SEGMENTATION PROCEDURES USING SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY IN EXUDATIVE AGE-RELATED MACULAR DEGENERATION. Retina, 2011, 31, 453-463.	1.7	18
15	RETINAL PIGMENT EPITHELIUM FINDINGS IN PATIENTS WITH ALBINISM USING WIDE-FIELD POLARIZATION-SENSITIVE OPTICAL COHERENCE TOMOGRAPHY. Retina, 2014, 34, 2208-2217.	1.7	18
16	Correspondence between retinotopic cortical mapping and conventional functional and morphological assessment of retinal disease. British Journal of Ophthalmology, 2019, 103, 208-215.	3.9	18
17	Serotonin and its 5-HT1 receptor in human mastocytosis. Immunopharmacology and Immunotoxicology, 2012, 34, 679-685.	2.4	12
18	Photoreceptor Layer Regeneration is Detectable in the Human Retina Imaged by SD-OCT after Laser Treatment Using Subthreshold Laser Power. , 2012, 53, 7019.		12

MARKUS RITTER

#	Article	IF	CITATIONS
19	A Novel Missense <i>NDP</i> Mutation [p.(Cys93Arg)] with a Manifesting Carrier in an Austrian Family with Norrie Disease. Audiology and Neuro-Otology, 2014, 19, 203-209.	1.3	9
20	IMAGING OF VITELLIFORM MACULAR LESIONS USING POLARIZATION-SENSITIVE OPTICAL COHERENCE TOMOGRAPHY. Retina, 2019, 39, 558-569.	1.7	7
21	Combining stimulus types for improved coverage in population receptive field mapping. NeuroImage, 2021, 238, 118240.	4.2	5
22	Coexistence of <i>KCNV2</i> associated cone dystrophy with supernormal rod electroretinogram and <i>MFRP</i> related oculopathy in a Turkish family. British Journal of Ophthalmology, 2013, 97, 169-173.	3.9	4
23	Electrophysiological findings show generalised post-photoreceptoral deficiency in macular telangiectasia type 2. British Journal of Ophthalmology, 2018, 102, 114-119.	3.9	4
24	Macular maldevelopment in <i>ATF6</i> -mediated retinal dysfunction. Ophthalmic Genetics, 2019, 40, 564-569.	1.2	3
25	The Spectrum of Internal Limiting Membrane Disease in Alport Syndrome. Retina, 2021, Publish Ahead of Print, .	1.7	3
26	Characterization of Choriocapillaris and Choroidal Abnormalities in Alport Syndrome. Translational Vision Science and Technology, 2022, 11, 23.	2.2	3
27	Different Serotonergic Expression in Nevomelanocytic Tumors. Cancers, 2010, 2, 1166-1177.	3.7	2
28	Expanding the Phenotype of the FAM149B1-Related Ciliopathy and Identification of Three Neurogenetic Disorders in a Single Family. Genes, 2021, 12, 1648.	2.4	2
29	Macular Telangiectasia type 2: multimodal assessment of retinal function and microstructure. Acta Ophthalmologica, 2021, , .	1.1	2
30	A novel approach for the assessment of population receptive field mapping results. Journal of Vision, 2019, 19, 278b.	0.3	0