Alistair J P Brown

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7854071/publications.pdf Version: 2024-02-01

ALISTAID LD ROOMN

#	Article	IF	CITATIONS
1	Antifungal agents: mechanisms of action. Trends in Microbiology, 2003, 11, 272-279.	7.7	965
2	Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature, 2009, 459, 657-662.	27.8	963
3	Candida albicans morphogenesis and host defence: discriminating invasion from colonization. Nature Reviews Microbiology, 2012, 10, 112-122.	28.6	693
4	Immune sensing of Candida albicans requires cooperative recognition of mannans and glucans by lectin and Toll-like receptors. Journal of Clinical Investigation, 2006, 116, 1642-1650.	8.2	632
5	Yeast-enhanced green fluorescent protein (yEGFP): a reporter of gene expression in Candida albicans. Microbiology (United Kingdom), 1997, 143, 303-311.	1.8	559
6	Fungal morphogenesis and host invasion. Current Opinion in Microbiology, 2002, 5, 366-371.	5.1	401
7	Role of the Hog1 Stress-activated Protein Kinase in the Global Transcriptional Response to Stress in the Fungal PathogenCandida albicans. Molecular Biology of the Cell, 2006, 17, 1018-1032.	2.1	343
8	Niche-specific regulation of central metabolic pathways in a fungal pathogen. Cellular Microbiology, 2006, 8, 961-971.	2.1	322
9	Clp10, an efficient and convenient integrating vector for <i>Candida albicans</i> . Yeast, 2000, 16, 325-327.	1.7	294
10	The PKC, HOG and Ca2+signalling pathways co-ordinately regulate chitin synthesis in Candida albicans. Molecular Microbiology, 2007, 63, 1399-1413.	2.5	285
11	Immune Recognition of <i>Candida albicans</i> βâ€glucan by Dectinâ€1. Journal of Infectious Diseases, 2007, 196, 1565-1571.	4.0	277
12	Host carbon sources modulate cell wall architecture, drug resistance and virulence in a fungal pathogen. Cellular Microbiology, 2012, 14, 1319-1335.	2.1	274
13	Regulatory networks controlling Candida albicans morphogenesis. Trends in Microbiology, 1999, 7, 333-338.	7.7	272
14	Ectopic Expression of URA3 Can Influence the Virulence Phenotypes and Proteome of Candida albicans but Can Be Overcome by Targeted Reintegration of URA3 at the RPS10 Locus. Eukaryotic Cell, 2004, 3, 900-909.	3.4	254
15	A systematic approach to modeling, capturing, and disseminating proteomics experimental data. Nature Biotechnology, 2003, 21, 247-254.	17.5	246
16	A Conserved Stress-activated Protein Kinase Regulates a Core Stress Response in the Human PathogenCandida albicans. Molecular Biology of the Cell, 2004, 15, 4179-4190.	2.1	241
17	ALS3 and ALS8 represent a single locus that encodes a Candida albicans adhesin; functional comparisons between Als3p and Als1p. Microbiology (United Kingdom), 2004, 150, 2415-2428.	1.8	225
18	Stress adaptation in a pathogenic fungus. Journal of Experimental Biology, 2014, 217, 144-155.	1.7	221

#	Article	IF	CITATIONS
19	APSES Proteins Regulate Morphogenesis and Metabolism inCandida albicans. Molecular Biology of the Cell, 2004, 15, 3167-3180.	2.1	219
20	Fungal Chitin Dampens Inflammation through IL-10 Induction Mediated by NOD2 and TLR9 Activation. PLoS Pathogens, 2014, 10, e1004050.	4.7	215
21	Outer Chain N-Glycans Are Required for Cell Wall Integrity and Virulence of Candida albicans. Journal of Biological Chemistry, 2006, 281, 90-98.	3.4	214
22	Metabolism impacts upon Candida immunogenicity and pathogenicity at multiple levels. Trends in Microbiology, 2014, 22, 614-622.	7.7	208
23	Transcript profiling in Candida albicans reveals new cellular functions for the transcriptional repressors CaTup1, CaMig1 and CaNrg1. Molecular Microbiology, 2001, 42, 981-993.	2.5	207
24	Lactate signalling regulates fungal β-glucan masking and immune evasion. Nature Microbiology, 2017, 2, 16238.	13.3	197
25	The efficiency of folding of some proteins is increased by controlled rates of translation in vivo. Journal of Molecular Biology, 1987, 193, 413-417.	4.2	186
26	Differential Adaptation of Candida albicans In Vivo Modulates Immune Recognition by Dectin-1. PLoS Pathogens, 2013, 9, e1003315.	4.7	181
27	Phylogenetic diversity of stress signalling pathways in fungi. BMC Evolutionary Biology, 2009, 9, 44.	3.2	177
28	Gcn4 co-ordinates morphogenetic and metabolic responses to amino acid starvation in Candida albicans. EMBO Journal, 2002, 21, 5448-5456.	7.8	173
29	Mnt1p and Mnt2p of Candida albicans Are Partially Redundant α-1,2-Mannosyltransferases That Participate in O-Linked Mannosylation and Are Required for Adhesion and Virulence. Journal of Biological Chemistry, 2005, 280, 1051-1060.	3.4	173
30	Recognition and Blocking of Innate Immunity Cells by Candida albicans Chitin. Infection and Immunity, 2011, 79, 1961-1970.	2.2	172
31	Cell Wall Remodeling Enzymes Modulate Fungal Cell Wall Elasticity and Osmotic Stress Resistance. MBio, 2015, 6, e00986.	4.1	169
32	Glucose Promotes Stress Resistance in the Fungal Pathogen <i>Candida albicans</i> . Molecular Biology of the Cell, 2009, 20, 4845-4855.	2.1	168
33	Candida albicans Pmr1p, a Secretory Pathway P-type Ca2+/Mn2+-ATPase, Is Required for Glycosylation and Virulence. Journal of Biological Chemistry, 2005, 280, 23408-23415.	3.4	167
34	The Candida albicans CaACE2 gene affects morphogenesis, adherence and virulence. Molecular Microbiology, 2004, 53, 969-983.	2.5	166
35	Nitrosative and oxidative stress responses in fungal pathogenicity. Current Opinion in Microbiology, 2009, 12, 384-391.	5.1	152
36	Carbon sourceâ€induced reprogramming of the cell wall proteome and secretome modulates the adherence and drug resistance of the fungal pathogen <scp><i>C</i></scp> <i>andida albicans</i> . Proteomics, 2012, 12, 3164-3179.	2.2	142

#	Article	IF	CITATIONS
37	The impact of the Fungus-Host-Microbiota interplay upon <i>Candida albicans</i> infections: current knowledge and new perspectives. FEMS Microbiology Reviews, 2021, 45, .	8.6	139
38	Property Differences among the Four Major <i>Candida albicans</i> Strain Clades. Eukaryotic Cell, 2009, 8, 373-387.	3.4	138
39	Proteomic and phenotypic profiling of the amphibian pathogen <i>Batrachochytrium dendrobatidis</i> shows that genotype is linked to virulence. Molecular Ecology, 2009, 18, 415-429.	3.9	138
40	Candida albicans Hypha Formation and Mannan Masking of β-Glucan Inhibit Macrophage Phagosome Maturation. MBio, 2014, 5, e01874.	4.1	138
41	Infection-related gene expression in Candida albicans. Current Opinion in Microbiology, 2007, 10, 307-313.	5.1	136
42	Msn2- and Msn4-Like Transcription Factors Play No Obvious Roles in the Stress Responses of the Fungal Pathogen Candida albicans. Eukaryotic Cell, 2004, 3, 1111-1123.	3.4	132
43	Growth of Candida albicans Cells on the Physiologically Relevant Carbon Source Lactate Affects Their Recognition and Phagocytosis by Immune Cells. Infection and Immunity, 2013, 81, 238-248.	2.2	132
44	Chs1 of Candida albicans is an essential chitin synthase required for synthesis of the septum and for cell integrity. Molecular Microbiology, 2004, 39, 1414-1426.	2.5	130
45	Dynamic Fungal Cell Wall Architecture in Stress Adaptation and Immune Evasion. Trends in Microbiology, 2018, 26, 284-295.	7.7	130
46	Niche-Specific Activation of the Oxidative Stress Response by the Pathogenic Fungus Candida albicans. Infection and Immunity, 2007, 75, 2143-2151.	2.2	125
47	A Multifunctional, Synthetic <i>Gaussia princeps</i> Luciferase Reporter for Live Imaging of <i>Candida albicans</i> Infections. Infection and Immunity, 2009, 77, 4847-4858.	2.2	123
48	Endoplasmic Reticulum α-Glycosidases of <i>Candida albicans</i> Are Required for N Glycosylation, Cell Wall Integrity, and Normal Host-Fungus Interaction. Eukaryotic Cell, 2007, 6, 2184-2193.	3.4	116
49	The relationship between mRNA stability and length inSaccharomyces cenvisiae. Nucleic Acids Research, 1986, 14, 8347-8360.	14.5	114
50	GFP as a quantitative reporter of gene regulation inCandida albicans. Yeast, 2004, 21, 333-340.	1.7	113
51	Global Roles of Ssn6 in Tup1- and Nrg1-dependent Gene Regulation in the Fungal Pathogen,Candida albicans. Molecular Biology of the Cell, 2005, 16, 2913-2925.	2.1	110
52	Developmental Regulation of an Adhesin Gene during Cellular Morphogenesis in the Fungal Pathogen Candida albicans. Eukaryotic Cell, 2007, 6, 682-692.	3.4	107
53	A Multifunctional Mannosyltransferase Family in Candida albicans Determines Cell Wall Mannan Structure and Host-Fungus Interactions. Journal of Biological Chemistry, 2010, 285, 12087-12095.	3.4	106
54	Hypoxia Promotes Immune Evasion by Triggering β-Glucan Masking on the Candida albicans Cell Surface via Mitochondrial and cAMP-Protein Kinase A Signaling. MBio, 2018, 9, .	4.1	105

#	Article	IF	CITATIONS
55	Hsp90 Orchestrates Transcriptional Regulation by Hsf1 and Cell Wall Remodelling by MAPK Signalling during Thermal Adaptation in a Pathogenic Yeast. PLoS Pathogens, 2012, 8, e1003069.	4.7	102
56	The Evolutionary Rewiring of Ubiquitination Targets Has Reprogrammed the Regulation of Carbon Assimilation in the Pathogenic Yeast Candida albicans. MBio, 2012, 3, .	4.1	102
57	The Mnn2 Mannosyltransferase Family Modulates Mannoprotein Fibril Length, Immune Recognition and Virulence of Candida albicans. PLoS Pathogens, 2013, 9, e1003276.	4.7	102
58	Cellular Responses of Candida albicans to Phagocytosis and the Extracellular Activities of Neutrophils Are Critical to Counteract Carbohydrate Starvation, Oxidative and Nitrosative Stress. PLoS ONE, 2012, 7, e52850.	2.5	99
59	Metabolism in Fungal Pathogenesis. Cold Spring Harbor Perspectives in Medicine, 2014, 4, a019695-a019695.	6.2	98
60	Exposure of Candida albicans to antifungal agents affects expression of SAP2 and SAP9 secreted proteinase genes. Journal of Antimicrobial Chemotherapy, 2005, 55, 645-654.	3.0	97
61	Impact of the unfolded protein response upon genome-wide expression patterns, and the role of Hac1 in the polarized growth, of Candida albicans. Fungal Genetics and Biology, 2008, 45, 1235-1247.	2.1	97
62	Proteomic response to amino acid starvation inCandida albicans andSaccharomyces cerevisiae. Proteomics, 2004, 4, 2425-2436.	2.2	95
63	Gene disruption in Candida albicans using a synthetic, codon-optimised Cre-loxP system. Fungal Genetics and Biology, 2005, 42, 737-748.	2.1	91
64	Structure and regulation of theCandida albicans ADH1 gene encoding an immunogenic alcohol dehydrogenase. , 1996, 12, 115-127.		90
65	Activation of the heat shock transcription factor Hsf1 is essential for the full virulence of the fungal pathogen Candida albicans. Fungal Genetics and Biology, 2011, 48, 297-305.	2.1	89
66	Role of the heat shock transcription factor, Hsf1, in a major fungal pathogen that is obligately associated with warmâ€blooded animals. Molecular Microbiology, 2009, 74, 844-861.	2.5	88
67	Genome-wide analysis of Candida albicans gene expression patterns during infection of the mammalian kidney. Fungal Genetics and Biology, 2009, 46, 210-219.	2.1	87
68	Melanin Externalization in Candida albicans Depends on Cell Wall Chitin Structures. Eukaryotic Cell, 2010, 9, 1329-1342.	3.4	85
69	Fungal Hsp90: a biological transistor that tunes cellular outputs to thermal inputs. Nature Reviews Microbiology, 2012, 10, 693-704.	28.6	84
70	In-host microevolution of Aspergillus fumigatus: A phenotypic and genotypic analysis. Fungal Genetics and Biology, 2018, 113, 1-13.	2.1	80
71	Multiple signalling pathways trigger the exquisite sensitivity of yeast gluconeogenic mRNAs to glucose. Molecular Microbiology, 1996, 20, 751-764.	2.5	79
72	Combinatorial stresses kill pathogenic <i>Candida</i> species. Medical Mycology, 2012, 50, 699-709.	0.7	79

#	Article	IF	CITATIONS
73	Small but Crucial: The Novel Small Heat Shock Protein Hsp21 Mediates Stress Adaptation and Virulence in Candida albicans. PLoS ONE, 2012, 7, e38584.	2.5	78
74	Glucose triggers different global responses in yeast, depending on the strength of the signal, and transiently stabilizes ribosomal protein mRNAs. Molecular Microbiology, 2003, 48, 713-724.	2.5	77
75	Hsf1 and Hsp90 orchestrate temperature-dependent global transcriptional remodelling and chromatin architecture in Candida albicans. Nature Communications, 2016, 7, 11704.	12.8	77
76	Efg1, a Morphogenetic Regulator in Candida albicans , Is a Sequence-Specific DNA Binding Protein. Journal of Bacteriology, 2001, 183, 4090-4093.	2.2	76
77	Mechanisms Underlying the Exquisite Sensitivity of Candida albicans to Combinatorial Cationic and Oxidative Stress That Enhances the Potent Fungicidal Activity of Phagocytes. MBio, 2014, 5, e01334-14.	4.1	76
78	Asynchronous Cell Cycle and Asymmetric Vacuolar Inheritance in True Hyphae of Candida albicans. Eukaryotic Cell, 2003, 2, 398-410.	3.4	75
79	Effects of Depleting the Essential Central Metabolic Enzyme Fructose-1,6-Bisphosphate Aldolase on the Growth and Viability of Candida albicans : Implications for Antifungal Drug Target Discovery. Eukaryotic Cell, 2006, 5, 1371-1377.	3.4	75
80	Transcriptional and functional insights into the host immune response against the emerging fungal pathogen Candida auris. Nature Microbiology, 2020, 5, 1516-1531.	13.3	75
81	A β-glucan-conjugate vaccine and anti-β-glucan antibodies are effective against murine vaginal candidiasis as assessed by a novel in vivo imaging technique. Vaccine, 2010, 28, 1717-1725.	3.8	74
82	The Rewiring of Ubiquitination Targets in a Pathogenic Yeast Promotes Metabolic Flexibility, Host Colonization and Virulence. PLoS Pathogens, 2016, 12, e1005566.	4.7	74
83	Pseudomonas aeruginosa secreted factors impair biofilm development in Candida albicans. Microbiology (United Kingdom), 2010, 156, 1476-1486.	1.8	73
84	Posttranslational Modifications of Proteins in the Pathobiology of Medically Relevant Fungi. Eukaryotic Cell, 2012, 11, 98-108.	3.4	73
85	<i>MNL1</i> Regulates Weak Acid–induced Stress Responses of the Fungal Pathogen <i>Candida albicans</i> . Molecular Biology of the Cell, 2008, 19, 4393-4403.	2.1	70
86	Fungal virulence studies come of age. Genome Biology, 2001, 2, reviews1009.1.	9.6	69
87	Non-canonical signalling mediates changes in fungal cell wall PAMPs that drive immune evasion. Nature Communications, 2019, 10, 5315.	12.8	67
88	<i>Candida albicans</i> colonization and dissemination from the murine gastrointestinal tract: the influence of morphology and Th17 immunity. Cellular Microbiology, 2015, 17, 445-450.	2.1	66
89	Candida albicans genome sequence: a platform for genomics in the absence of genetics. Genome Biology, 2004, 5, 230.	9.6	64
90	Early-Expressed Chemokines Predict Kidney Immunopathology in Experimental Disseminated Candida albicans Infections. PLoS ONE, 2009, 4, e6420.	2.5	64

#	Article	IF	CITATIONS
91	Host-Imposed Copper Poisoning Impacts Fungal Micronutrient Acquisition during Systemic Candida albicans Infections. PLoS ONE, 2016, 11, e0158683.	2.5	64
92	Protein folding within the cell is influenced by controlled rates of polypeptide elongation. Journal of Molecular Biology, 1992, 228, 7-12.	4.2	60
93	Differential post-transcriptional regulation of yeast mRNAs in response to high and low glucose concentrations. Molecular Microbiology, 2002, 35, 553-565.	2.5	60
94	A physical comparison of chromosome III in six strains ofSaccharomyces cerevisiae. Yeast, 1994, 10, 39-57.	1.7	59
95	Molecular and proteomic analyses highlight the importance of ubiquitination for the stress resistance, metabolic adaptation, morphogenetic regulation and virulence of <i>Candida albicans</i> . Molecular Microbiology, 2011, 79, 1574-1593.	2.5	59
96	Identification of sumoylation targets, combined with inactivation of <i>SMT3</i> , reveals the impact of sumoylation upon growth, morphology, and stress resistance in the pathogen <i>Candida albicans</i> . Molecular Biology of the Cell, 2011, 22, 687-702.	2.1	59
97	PEDRo: A database for storing, searching and disseminating experimental proteomics data. BMC Genomics, 2004, 5, 68.	2.8	58
98	Global Role of the Protein Kinase Gcn2 in the Human Pathogen Candida albicans. Eukaryotic Cell, 2005, 4, 1687-1696.	3.4	58
99	Integrative Model of Oxidative Stress Adaptation in the Fungal Pathogen Candida albicans. PLoS ONE, 2015, 10, e0137750.	2.5	57
100	Pyruvate kinase (Pyk1) levels influence both the rate and direction of carbon flux in yeast under fermentative conditions. Microbiology (United Kingdom), 2001, 147, 391-401.	1.8	56
101	Adapting to survive: How Candida overcomes host-imposed constraints during human colonization. PLoS Pathogens, 2020, 16, e1008478.	4.7	56
102	Functional specialization and differential regulation of shortâ€chain carboxylic acid transporters in the pathogen <i>Candida albicans</i> . Molecular Microbiology, 2010, 75, 1337-1354.	2.5	54
103	Oligomeric Structure and Regulation of Candida albicans Glucosamine-6-phosphate Synthase. Journal of Biological Chemistry, 1999, 274, 4000-4008.	3.4	53
104	Modelling the Regulation of Thermal Adaptation in Candida albicans, a Major Fungal Pathogen of Humans. PLoS ONE, 2012, 7, e32467.	2.5	52
105	The Levels of Yeast Gluconeogenic mRNAs Respond to Environmental Factors. FEBS Journal, 1994, 224, 473-481.	0.2	51
106	A proteomic analysis of the salt, cadmium and peroxide stress responses in <i>Candida albicans</i> and the role of the Hog1 stressâ€activated MAPK in regulating the stressâ€induced proteome. Proteomics, 2009, 9, 4686-4703.	2.2	51
107	5â€ ² -Secondary structure formation, in constrast to a short string of non-preferred codons, inhibits the translation of the pyruvate kinase mRNA in yeast. Yeast, 1989, 5, 187-198.	1.7	48
108	Fungal Iron Availability during Deep Seated Candidiasis Is Defined by a Complex Interplay Involving Systemic and Local Events. PLoS Pathogens, 2013, 9, e1003676.	4.7	48

#	Article	IF	CITATIONS
109	Translation and stability of anEscherichia coliβ-galactosidase mRNA expressed under the control of pyruvate kinase sequences inSaccharomyces cerevisiae. Nucleic Acids Research, 1987, 15, 7963-7974.	14.5	47
110	Conflicting Interests in the Pathogen–Host Tug of War: Fungal Micronutrient Scavenging Versus Mammalian Nutritional Immunity. PLoS Pathogens, 2014, 10, e1003910.	4.7	46
111	Pho4 mediates phosphate acquisition in <i>Candida albicans</i> and is vital for stress resistance and metal homeostasis. Molecular Biology of the Cell, 2016, 27, 2784-2801.	2.1	46
112	Stress Adaptation. Microbiology Spectrum, 2017, 5, .	3.0	46
113	Candida albicans Iff11, a Secreted Protein Required for Cell Wall Structure and Virulence. Infection and Immunity, 2007, 75, 2922-2928.	2.2	45
114	Nitric oxide and nitrosative stress tolerance in yeast. Biochemical Society Transactions, 2011, 39, 219-223.	3.4	45
115	Messemger RNA stability in Saccharomyces cerevisiae: the influence of transaltion and poly (A) tail length. Nucleic Acids Research, 1987, 15, 2417-2429.	14.5	43
116	Elevated catalase expression in a fungal pathogen is a double-edged sword of iron. PLoS Pathogens, 2017, 13, e1006405.	4.7	43
117	Rad6p represses yeast-hypha morphogenesis in the human fungal pathogen Candida albicans. Molecular Microbiology, 2000, 35, 1264-1275.	2.5	42
118	Proteomic analysis of the pH response in the fungal pathogen <i>Candida glabrata</i> . Proteomics, 2008, 8, 534-544.	2.2	42
119	Epitope Shaving Promotes Fungal Immune Evasion. MBio, 2020, 11, .	4.1	41
120	Constitutive activation of the Saccharomyces cerevislae mating response pathway by a MAP kinase kinase from Candida albicans. Molecular Genetics and Genomics, 1995, 249, 609-621.	2.4	40
121	Universal Metrics for Quality Assessment of Protein Identifications by Mass Spectrometry. Molecular and Cellular Proteomics, 2006, 5, 1205-1211.	3.8	39
122	Scalar nanostructure of the Candida albicans cell wall; a molecular, cellular and ultrastructural analysis and interpretation. Cell Surface, 2020, 6, 100047.	3.0	39
123	Messenger RNA stability in yeast. Yeast, 1989, 5, 239-257.	1.7	38
124	Positive regulation of the LPD1 gene of Saccharomyces cerevisine by the HAP2/HAP3/HAP4 activation system. Molecular Genetics and Genomics, 1992, 231, 296-303.	2.4	38
125	Glycosylation status of theC. albicanscell wall affects the efficiency of neutrophil phagocytosis and killing but not cytokine signaling. Medical Mycology, 2011, 49, 1-12.	0.7	38

Genetic manipulation of 6-phosphofructo-1-kinase and fructose 2,6-bisphosphate levels affects the extent to which benzoic acid inhibits the growth of Saccharomyces cerevisiae. Microbiology (United) Tj ETQq0 0 0 ug&T /Ovedack 10 Tf

#	Article	IF	CITATIONS
127	Genomeâ€wide gene expression profiling and a forward genetic screen show that differential expression of the sodium ion transporter Ena21 contributes to the differential tolerance of <i>Candida albicans</i> and <i>Candida dubliniensis</i> to osmotic stress. Molecular Microbiology, 2009, 72, 216-228.	2.5	37
128	A transcriptome analysis of isoamyl alcohol-induced filamentation in yeast reveals a novel role for Gre2p as isovaleraldehyde reductase. FEMS Yeast Research, 2007, 7, 84-92.	2.3	35
129	Contribution of Fdh3 and Glr1 to Glutathione Redox State, Stress Adaptation and Virulence in Candida albicans. PLoS ONE, 2015, 10, e0126940.	2.5	35
130	The yeast pyruvate kinase gene does not contain a string of non- preferred codons: Revised nucleotide sequence. FEBS Letters, 1989, 247, 312-316.	2.8	34
131	New Clox Systems for Rapid and Efficient Gene Disruption in Candida albicans. PLoS ONE, 2014, 9, e100390.	2.5	34
132	Immune cells fold and damage fungal hyphae. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	34
133	The Folding of the Bifunctional TRP3 Protein in Yeast is Influenced by a Translational Pause which Lies in a Region of Structural Divergence with Escherichia coli Indoleglycerol-Phosphate Synthase. FEBS Journal, 1994, 226, 657-664.	0.2	33
134	Transcript analysis of 250 novel yeast genes from chromosome XIV. , 1999, 15, 329-350.		33
135	Phosphorylation regulates polarisation of chitin synthesis in Candida albicans. Journal of Cell Science, 2010, 123, 2199-2206.	2.0	33
136	Candida albicans VAC8 Is Required for Vacuolar Inheritance and Normal Hyphal Branching. Eukaryotic Cell, 2006, 5, 359-367.	3.4	32
137	Memory in Fungal Pathogens Promotes Immune Evasion, Colonisation, and Infection. Trends in Microbiology, 2019, 27, 219-230.	7.7	32
138	Transcriptomic and proteomic profiling revealed reprogramming of carbon metabolism in acetate-grown human pathogen Candida glabrata. Journal of Biomedical Science, 2021, 28, 1.	7.0	32
139	Physiologically Relevant Alternative Carbon Sources Modulate Biofilm Formation, Cell Wall Architecture, and the Stress and Antifungal Resistance of Candida glabrata. International Journal of Molecular Sciences, 2019, 20, 3172.	4.1	30
140	Differences in fungal immune recognition by monocytes and macrophages: N-mannan can be a shield or activator of immune recognition. Cell Surface, 2020, 6, 100042.	3.0	30
141	Information quality in proteomics. Briefings in Bioinformatics, 2007, 9, 174-188.	6.5	29
142	Expression of one-hybrid fusions with Staphylococcus aureus lexA in Candida albicans confirms that Nrg1 is a transcriptional repressor and that Gcn4 is a transcriptional activator. Fungal Genetics and Biology, 2005, 42, 676-683.	2.1	28
143	A systems biology analysis of long and short-term memories of osmotic stress adaptation in fungi. BMC Research Notes, 2012, 5, 258.	1.4	28
144	Mechanisms Underlying the Delayed Activation of the Cap1 Transcription Factor in Candida albicans following Combinatorial Oxidative and Cationic Stress Important for Phagocytic Potency. MBio, 2016, 7, e00331.	4.1	28

#	Article	IF	CITATIONS
145	Glyoxylate cycle gene ICL1 is essential for the metabolic flexibility and virulence of Candida glabrata. Scientific Reports, 2019, 9, 2843.	3.3	28
146	Blocking two-component signalling enhances Candida albicans virulence and reveals adaptive mechanisms that counteract sustained SAPK activation. PLoS Pathogens, 2017, 13, e1006131.	4.7	28
147	From START to FINISH: The Influence of Osmotic Stress on the Cell Cycle. PLoS ONE, 2013, 8, e68067.	2.5	27
148	The environmental stress sensitivities of pathogenic Candida species, including Candida auris, and implications for their spread in the hospital setting. Medical Mycology, 2020, 58, 744-755.	0.7	27
149	Codon utilisation in the pathogenic yeast,Candida albicans. Nucleic Acids Research, 1991, 19, 4298-4298.	14.5	26
150	Cell wall protection by the Candida albicans class I chitin synthases. Fungal Genetics and Biology, 2015, 82, 264-276.	2.1	26
151	mRNA translation in yeast during entry into stationary phase. Molecular Genetics and Genomics, 1998, 259, 282-293.	2.4	25
152	Protein A-tagging for purification of native macromolecular complexes fromCandida albicans. Yeast, 2003, 20, 1235-1241.	1.7	25
153	Recreation of in-host acquired single nucleotide polymorphisms by CRISPR-Cas9 reveals an uncharacterised gene playing a role in Aspergillus fumigatus azole resistance via a non-cyp51A mediated resistance mechanism. Fungal Genetics and Biology, 2019, 130, 98-106.	2.1	25
154	The effects of alterations within the 3' untranslated region of the pyruvate kinase messenger RNA upon its stability and translation inSaccharomyces cerevisiae. Nucleic Acids Research, 1987, 15, 7951-7962.	14.5	24
155	Bioluminescent fungi for real-time monitoring of fungal infections. Virulence, 2010, 1, 174-176.	4.4	24
156	The relevance of heat shock regulation in fungal pathogens of humans. Virulence, 2010, 1, 330-332.	4.4	24
157	Proteomic changes associated with inactivation of theCandida glabrata ACE2 virulence-moderating gene. Proteomics, 2005, 5, 1838-1848.	2.2	23
158	Genomics and the development of new diagnostics and anti-Candida drugs. Trends in Microbiology, 2007, 15, 310-317.	7.7	23
159	Impact of the transcriptional regulator, Ace2, on the <i>Candida glabrata</i> secretome. Proteomics, 2010, 10, 212-223.	2.2	23
160	Role of the Candida albicans MNN1 gene family in cell wall structure and virulence. BMC Research Notes, 2013, 6, 294.	1.4	23
161	Redox Regulation, Rather than Stress-Induced Phosphorylation, of a Hog1 Mitogen-Activated Protein Kinase Modulates Its Nitrosative-Stress-Specific Outputs. MBio, 2018, 9, .	4.1	23
162	The zygomycetous fungus, Benjaminiella poitrasii contains a large family of differentially regulated chitin synthase genes. Fungal Genetics and Biology, 2002, 36, 215-223.	2.1	22

#	Article	IF	CITATIONS
163	Sfp1 and Rtg3 reciprocally modulate carbon sourceâ€conditional stress adaptation in the pathogenic yeastCandida albicans. Molecular Microbiology, 2017, 105, 620-636.	2.5	21
164	Messenger RNA degradation in Saccharomyces cerevisiae. Gene, 1988, 72, 151-160.	2.2	19
165	Anticipatory Stress Responses and Immune Evasion in Fungal Pathogens. Trends in Microbiology, 2021, 29, 416-427.	7.7	19
166	Oma1 Links Mitochondrial Protein Quality Control and TOR Signaling To Modulate Physiological Plasticity and Cellular Stress Responses. Molecular and Cellular Biology, 2016, 36, 2300-2312.	2.3	18
167	Specificity of the osmotic stress response in Candida albicans highlighted by quantitative proteomics. Scientific Reports, 2018, 8, 14492.	3.3	18
168	Stress-induced nuclear accumulation is dispensable for Hog1-dependent gene expression and virulence in a fungal pathogen. Scientific Reports, 2017, 7, 14340.	3.3	17
169	Thoughts on the evolution of Core Environmental Responses in yeasts. Fungal Biology, 2020, 124, 475-481.	2.5	17
170	Mitochondrial Reactive Oxygen Species Regulate Immune Responses of Macrophages to Aspergillus fumigatus. Frontiers in Immunology, 2021, 12, 641495.	4.8	17
171	Expression of a yeast glycolytic gene is subject to dosage limitation. Gene, 1990, 89, 85-92.	2.2	16
172	Gene Regulation during Morphogenesis in <i>Candida albicans</i> . , 2000, 5, 112-125.		16
173	A quantitative model for mRNA translation in <i>Saccharomyces cerevisiae</i> . Yeast, 2010, 27, 785-800.	1.7	16
174	Analysing GCN4 translational control in yeast by stochastic chemical kinetics modelling and simulation. BMC Systems Biology, 2011, 5, 131.	3.0	16
175	Impact of the Environment upon the Candida albicans Cell Wall and Resultant Effects upon Immune Surveillance. Current Topics in Microbiology and Immunology, 2019, 425, 297-330.	1.1	16
176	Transcriptional responses of Candida glabrata biofilm cells to fluconazole are modulated by the carbon source. Npj Biofilms and Microbiomes, 2020, 6, 4.	6.4	16
177	Antifungal Activity of Antimicrobial Peptides and Proteins against Aspergillus fumigatus. Journal of Fungi (Basel, Switzerland), 2020, 6, 65.	3.5	15
178	Differential Regulation of Kidney and Spleen Cytokine Responses in Mice Challenged with Pathology-Standardized Doses of <i>Candida albicans</i> Mannosylation Mutants. Infection and Immunity, 2011, 79, 146-152.	2.2	14
179	Drug-mediated metabolic tipping between antibiotic resistant states in a mixed-species community. Nature Ecology and Evolution, 2018, 2, 1312-1320.	7.8	14
180	A comparison of the reactivity and stability of wild type and His388 Gln mutant phosphoglycerate kinase from yeast. FEBS Journal, 1991, 202, 1157-1164.	0.2	13

#	Article	IF	CITATIONS
181	Azole antifungals induce up-regulation of SAP4, SAP5 and SAP6 secreted proteinase genes in filamentous Candida albicans cells in vitro and in vivo. Journal of Antimicrobial Chemotherapy, 2007, 61, 315-322.	3.0	13
182	MICROBIOLOGY: Enhanced: Candida's Arranged Marriage. Science, 2000, 289, 256-257.	12.6	12
183	The carboxylic acid transporters Jen1 and Jen2 affect the architecture and fluconazole susceptibility of <i>Candida albicans</i> biofilm in the presence of lactate. Biofouling, 2017, 33, 943-954.	2.2	12
184	Characterization of a New Hemoprotein in the YeastSaccharomyces cerevisiae. Journal of Biological Chemistry, 1999, 274, 5032-5037.	3.4	11
185	Toward a Molecular Understanding of <i>Candida albicans</i> Virulence. , 0, , 305-P1.		10
186	Stress Adaptation. , 0, , 463-485.		9
187	Strategic Research Funding: A Success Story for Medical Mycology. Trends in Microbiology, 2018, 26, 811-813.	7.7	9
188	Erg25 Controls Host-Cholesterol Uptake Mediated by Aus1p-Associated Sterol-Rich Membrane Domains in Candida glabrata. Frontiers in Cell and Developmental Biology, 2022, 10, 820675.	3.7	9
189	The complete sequence of a 7·5 kb region of chromosome III fromSaccharomyces cerevisiae that lies betweenCRY1 andMAT. Yeast, 1991, 7, 761-772.	1.7	8
190	Over-expression ofcandida albicans mitochondrial ribosomal protein S9 (MrpS9p) disturbs mitochondrial function inSaccharomyces cerevisiae. , 1999, 15, 139-143.		8
191	Raw genome sequence data for 13 isogenic Aspergillus fumigatus strains isolated over a 2 year period from a patient with chronic granulomatous disease. Data in Brief, 2019, 25, 104021.	1.0	8
192	Might Candida albicans be made to mate after all?. Trends in Microbiology, 2000, 8, 4-6.	7.7	6
193	Reporters for the analysis of N-glycosylation in Candida albicans. Fungal Genetics and Biology, 2013, 56, 107-115.	2.1	6
194	Identifying Candida albicans Gene Networks Involved in Pathogenicity. Frontiers in Genetics, 2020, 11, 375.	2.3	5
195	Signal Transduction and Morphogenesis in Candida albicans. , 2001, , 55-71.		5
196	Utilization of Polyadenylated mRNA during Growth and Starvation in Physarum polycephalum. FEBS Journal, 1980, 110, 413-420.	0.2	4
197	14 Integration of Metabolism with Virulence in Candida albicans. , 2014, , 349-370.		4
198	The TATA-Binding Protein (TBP) from the Human Fungal Pathogen Candida albicans Can Complement Defects in Human and Yeast TBPs. Journal of Bacteriology, 1998, 180, 1771-1776.	2.2	4

0

#	Article	IF	CITATIONS
199	Understanding the Role of Nitronate Monooxygenases in Virulence of the Human Fungal Pathogen Aspergillus fumigatus. Journal of Fungi (Basel, Switzerland), 2022, 8, 736.	3.5	4
200	Plasmids for <i>in vivo</i> construction of integrative <i>Candida albicans</i> vectors in <i>Saccharomyces cerevisiae</i> . Yeast, 2010, 27, 933-939.	1.7	3
201	Stress Responses in Candida. , 0, , 225-242.		3
202	24 Yeast Gene Analysis in the Next Millennium. Methods in Microbiology, 1998, 26, 451-461.	0.8	1
203	Molecular and proteomic analyses highlight the importance of ubiquitination for the stress resistance, metabolic adaptation, morphogenetic regulation and virulence of <i>Candida albicans</i> . Molecular Microbiology, 2012, 84, 594-594.	2.5	1
204	Eukaryotic Translation Initiation Factor Interactions. , 2013, , 675-678.		1
205	The Effect of Growth on Translation of Polyadenylated Messenger Ribonucleic Acid in <i>Physarum polycephalum</i> . Biochemical Society Transactions, 1979, 7, 665-666.	3.4	0
206	Protein biosynthesis. Trends in Cell Biology, 1992, 2, 251.	7.9	0
207	Control of messenger RNA stability. Trends in Cell Biology, 1994, 4, 68-69.	7.9	0
208	8 Transcript Analysis. Methods in Microbiology, 1998, 26, 119-139.	0.8	0
209	Reply to "Unrealistic Nonphysiological Amounts of Reagents and a Disregard for Published Literature― MBio, 2015, 6, .	4.1	0

210 Translational Control of GCN4. , 2013, , 2293-2296.