Philippe Huybrechts

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7853873/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Eight glacial cycles from an Antarctic ice core. Nature, 2004, 429, 623-628.	27.8	2,015
2	One-to-one coupling of glacial climate variability in Greenland and Antarctica. Nature, 2006, 444, 195-198.	27.8	1,111
3	Eemian interglacial reconstructed from a Greenland folded ice core. Nature, 2013, 493, 489-494.	27.8	565
4	Sea-level changes at the LGM from ice-dynamic reconstructions of the Greenland and Antarctic ice sheets during the glacial cycles. Quaternary Science Reviews, 2002, 21, 203-231.	3.0	537
5	Ice-Sheet and Sea-Level Changes. Science, 2005, 310, 456-460.	12.6	463
6	Increased Runoff from Melt from the Greenland Ice Sheet: A Response to Global Warming. Journal of Climate, 2008, 21, 331-341.	3.2	392
7	The Dynamic Response of the Greenland and Antarctic Ice Sheets to Multiple-Century Climatic Warming. Journal of Climate, 1999, 12, 2169-2188.	3.2	345
8	Modelling the response of glaciers to climate warming. Climate Dynamics, 1998, 14, 267-274.	3.8	310
9	Greenland Ice Sheet: Increased coastal thinning. Geophysical Research Letters, 2004, 31, .	4.0	310
10	Melt-induced speed-up of Greenland ice sheet offset by efficient subglacial drainage. Nature, 2011, 469, 521-524.	27.8	304
11	A 3-D model for the Antarctic ice sheet: a sensitivity study on the glacial-interglacial contrast. Climate Dynamics, 1990, 5, 79-92.	3.8	290
12	Description of the Earth system model of intermediate complexity LOVECLIM version 1.2. Geoscientific Model Development, 2010, 3, 603-633.	3.6	279
13	Threatened loss of the Greenland ice-sheet. Nature, 2004, 428, 616-616.	27.8	220
14	Contributions from glacially derived sediment to the global iron (oxyhydr)oxide cycle: Implications for iron delivery to the oceans. Geochimica Et Cosmochimica Acta, 2006, 70, 2765-2780.	3.9	216
15	Runoff and mass balance of the Greenland ice sheet: 1958–2003. Journal of Geophysical Research, 2005, 110, .	3.3	211
16	Results from the EISMINT model intercomparison: the effects of thermomechanical coupling. Journal of Glaciology, 2000, 46, 227-238.	2.2	200
17	Projected land ice contributions to twenty-first-century sea level rise. Nature, 2021, 593, 74-82.	27.8	200
18	Elimination of the Greenland Ice Sheet in a High CO2 Climate. Journal of Climate, 2005, 18, 3409-3427.	3.2	198

#	Article	IF	CITATIONS
19	ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st century. Cryosphere, 2020, 14, 3033-3070.	3.9	198
20	Twentieth-Century Global-Mean Sea Level Rise: Is the Whole Greater than the Sum of the Parts?. Journal of Climate, 2013, 26, 4476-4499.	3.2	197
21	The influence of North Atlantic atmospheric and oceanic forcing effects on 1900–2010 Greenland summer climate and ice melt/runoff. International Journal of Climatology, 2013, 33, 862-880.	3.5	193
22	Marineâ€ŧerminating glaciers sustain high productivity in Greenland fjords. Global Change Biology, 2017, 23, 5344-5357.	9.5	192
23	Results of the Marine Ice Sheet Model Intercomparison Project, MISMIP. Cryosphere, 2012, 6, 573-588.	3.9	191
24	The treatment of meltwater retention in mass-balance parameterizations of the Greenland ice sheet. Annals of Glaciology, 2000, 31, 133-140.	1.4	188
25	The EISMINT benchmarks for testing ice-sheet models. Annals of Glaciology, 1996, 23, 1-12.	1.4	187
26	Grounding-line migration in plan-view marine ice-sheet models: results of the ice2sea MISMIP3d intercomparison. Journal of Glaciology, 2013, 59, 410-422.	2.2	179
27	Ice-sheet contributions to future sea-level change. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2006, 364, 1709-1732.	3.4	176
28	Calibrating a glaciological model of the Greenland ice sheet from the Last Glacial Maximum to present-day using field observations of relative sea level and ice extent. Quaternary Science Reviews, 2009, 28, 1631-1657.	3.0	175
29	A model of Greenland ice sheet deglaciation constrained by observations of relative sea level and ice extent. Quaternary Science Reviews, 2014, 102, 54-84.	3.0	171
30	High Arctic Holocene temperature record from the Agassiz ice cap and Greenland ice sheet evolution. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5952-5957.	7.1	163
31	Ocean regulation hypothesis for glacier dynamics in southeast Greenland and implications for ice sheet mass changes. Journal of Geophysical Research, 2010, 115, .	3.3	162
32	The Greenland ice sheet and greenhouse warming. Palaeogeography, Palaeoclimatology, Palaeoecology, 1991, 89, 399-412.	2.3	144
33	The future sea-level contribution of the Greenland ice sheet: a multi-model ensemble study of ISMIP6. Cryosphere, 2020, 14, 3071-3096.	3.9	144
34	"EDML1": a chronology for the EPICA deep ice core from Dronning Maud Land, Antarctica, over the last 150 000 years. Climate of the Past, 2007, 3, 475-484.	3.4	143
35	A comparison of different ways of dealing with isostasy: examples from modelling the Antarctic ice sheet during the last glacial cycle. Annals of Glaciology, 1996, 23, 309-317.	1.4	142
36	Implications of changes in freshwater flux from the Greenland ice sheet for the climate of the 21st century. Geophysical Research Letters, 2003, 30, n/a-n/a.	4.0	140

#	Article	IF	CITATIONS
37	Modelling Antarctic and Greenland volume changes during the 20th and 21st centuries forced by GCM time slice integrations. Global and Planetary Change, 2004, 42, 83-105.	3.5	129
38	Evolution of supra-glacial lakes across the Greenland Ice Sheet. Remote Sensing of Environment, 2009, 113, 2164-2171.	11.0	128
39	Surface mass balance model intercomparison for the Greenland ice sheet. Cryosphere, 2013, 7, 599-614.	3.9	127
40	Thermomechanical modelling of Northern Hemisphere ice sheets with a two-level mass-balance parameterization. Annals of Glaciology, 1995, 21, 111-116.	1.4	121
41	Greenland Ice Sheet surface mass balance 1870 to 2010 based on Twentieth Century Reanalysis, and links with global climate forcing. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	118
42	GrSMBMIP: intercomparison of the modelled 1980–2012 surface mass balance over the Greenland Ice Sheet. Cryosphere, 2020, 14, 3935-3958.	3.9	111
43	Steady-state characteristics of the Greenland ice sheet under different climates. Journal of Glaciology, 1991, 37, 149-157.	2.2	110
44	Hydrologic response of the Greenland ice sheet: the role of oceanographic warming. Hydrological Processes, 2009, 23, 7-30.	2.6	110
45	Balance velocities and measured properties of the Antarctic ice sheet from a new compilation of gridded data for modelling. Annals of Claciology, 2000, 30, 52-60.	1.4	107
46	Thresholds for irreversible decline of the Greenland ice sheet. Climate Dynamics, 2010, 35, 1049-1057.	3.8	107
47	The present evolution of the Greenland ice sheet: an assessment by modelling. Global and Planetary Change, 1994, 9, 39-51.	3.5	106
48	Modeling the influence of Greenland ice sheet melting on the Atlantic meridional overturning circulation during the next millennia. Geophysical Research Letters, 2007, 34, .	4.0	106
49	Sensitivity of Greenland Ice Sheet Projections to Model Formulations. Journal of Glaciology, 2013, 59, 733-749.	2.2	105
50	Modeling of the northern hemisphere ice sheets during the last glacial cycle and glaciological sensitivity. Journal of Geophysical Research, 2005, 110, .	3.3	101
51	Steady-state characteristics of the Greenland ice sheet under different climates. Journal of Glaciology, 1991, 37, 149-157.	2.2	99
52	Response of the Greenland and Antarctic Ice Sheets to Multi-Millennial Greenhouse Warming in the Earth System Model of Intermediate Complexity LOVECLIM. Surveys in Geophysics, 2011, 32, 397-416.	4.6	93
53	Projecting Antarctica's contribution to future sea level rise from basal ice shelf melt using linear response functions of 16 ice sheet models (LARMIP-2). Earth System Dynamics, 2020, 11, 35-76.	7.1	92
54	Glaciological Modelling of the Late Cenozoic East Antarctic Ice Sheet: Stability or Dynamism?. Geografiska Annaler, Series A: Physical Geography, 1993, 75, 221.	1.5	90

#	Article	IF	CITATIONS
55	The EISMINT benchmarks for testing ice-sheet models. Annals of Glaciology, 1996, 23, 1-12.	1.4	90
56	Design and results of the ice sheet model initialisation experiments initMIP-Greenland: an ISMIP6 intercomparison. Cryosphere, 2018, 12, 1433-1460.	3.9	89
57	lce-dynamic projections of the Greenland ice sheet in response to atmospheric and oceanic warming. Cryosphere, 2015, 9, 1039-1062.	3.9	88
58	The Greenland ice sheet and greenhouse warming. Global and Planetary Change, 1991, 3, 399-412.	3.5	87
59	Enhanced basal lubrication and the contribution of the Greenland ice sheet to future sea-level rise. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14156-14161.	7.1	85
60	Glaciological Modelling of the Late Cenozoic East Antarctic Ice Sheet: Stability or Dynamism?. Geografiska Annaler, Series A: Physical Geography, 1993, 75, 221-238.	1.5	84
61	Antarctic iceâ€sheet melting provides negative feedbacks on future climate warming. Geophysical Research Letters, 2008, 35, .	4.0	83
62	Response of the Antarctic ice sheet to future greenhouse warming. Climate Dynamics, 1990, 5, 93-102.	3.8	79
63	The Greenland ice sheet through the last glacial-interglacial cycle. Palaeogeography, Palaeoclimatology, Palaeoecology, 1991, 90, 385-394.	2.3	78
64	Estimation of the Greenland ice sheet surface mass balance for the 20th and 21st centuries. Cryosphere, 2008, 2, 117-129.	3.9	78
65	The response of the southern Greenland ice sheet to the Holocene thermal maximum. Geology, 2015, 43, 291-294.	4.4	78
66	Evolution of the East Antarctic Ice Sheet: A Numerical Study of Thermo-Mechanical Response Patterns With Changing Climate. Annals of Glaciology, 1988, 11, 52-59.	1.4	76
67	Synchronisation of the EDML and EDC ice cores for the last 52 kyr by volcanic signature matching. Climate of the Past, 2007, 3, 367-374.	3.4	73
68	The subglacial cavity and implied dynamics under Nioghalvfjerdsfjorden Glacier, NE-Greenland. Geophysical Research Letters, 2000, 27, 2289-2292.	4.0	72
69	Climatic Impact of a Greenland Deglaciation and Its Possible Irreversibility. Journal of Climate, 2004, 17, 21-33.	3.2	72
70	A comparison of different ways of dealing with isostasy: examples from modelling the Antarctic ice sheet during the last glacial cycle. Annals of Glaciology, 1996, 23, 309-317.	1.4	71
71	initMIP-Antarctica: an ice sheet model initialization experiment of ISMIP6. Cryosphere, 2019, 13, 1441-1471.	3.9	69
72	Effect of uncertainty in surface mass balance–elevation feedback on projections of the future sea level contribution of the Greenland ice sheet. Cryosphere, 2014, 8, 195-208.	3.9	67

#	Article	IF	CITATIONS
73	Modelling Antarctic sea-level data to explore the possibility of a dominant Antarctic contribution to meltwater pulse IA. Quaternary Science Reviews, 2007, 26, 2113-2127.	3.0	66
74	The Antarctic Ice Sheet During the Last Glacial-Interglacial Cycle: A Three-Dimensional Experiment. Annals of Glaciology, 1990, 14, 115-119.	1.4	65
75	Ice sheet extent and early deglacial history of the southwestern sector of the Greenland Ice Sheet. Quaternary Science Reviews, 2009, 28, 2760-2773.	3.0	65
76	Simulating the Antarctic ice sheet in the late-Pliocene warm period: PLISMIP-ANT, an ice-sheet model intercomparison project. Cryosphere, 2015, 9, 881-903.	3.9	61
77	An ice-shelf model test based on the Ross Ice Shelf, Antarctica. Annals of Glaciology, 1996, 23, 46-51.	1.4	58
78	The Antarctic Ice Sheet During the Last Glacial-Interglacial Cycle: A Three-Dimensional Experiment. Annals of Glaciology, 1990, 14, 115-119.	1.4	57
79	Basal temperature conditions of the Greenland ice sheet during the glacial cycles. Annals of Glaciology, 1996, 23, 226-236.	1.4	57
80	Antarctic glacial history from numerical models and continental margin sediments. Palaeogeography, Palaeoclimatology, Palaeoecology, 1999, 150, 247-267.	2.3	57
81	Direct effect of ice sheets on terrestrial bicarbonate, sulphate and base cation fluxes during the last glacial cycle: minimal impact on atmospheric CO2 concentrations. Chemical Geology, 2002, 190, 33-44.	3.3	56
82	Ice thinning, upstream advection, and non-climatic biases for the upper 89% of the EDML ice core from a nested model of the Antarctic ice sheet. Climate of the Past, 2007, 3, 577-589.	3.4	52
83	Late Weichselian relative sea-level changes and ice sheet history in southeast Greenland. Earth and Planetary Science Letters, 2008, 272, 8-18.	4.4	50
84	Basal temperature conditions of the Greenland ice sheet during the glacial cycles. Annals of Glaciology, 1996, 23, 226-236.	1.4	49
85	An improved estimate of microbially mediated carbon fluxes from the Greenland ice sheet. Journal of Glaciology, 2012, 58, 1098-1108.	2.2	49
86	Results from the Ice-Sheet Model Intercomparison Project–Heinrich Event Intercomparison (ISMIP) Tj ETQqO	0 0 rgBT /C	overlock 10 Tf
87	Last Interglacial climate and sea-level evolution from a coupled ice sheet–climate model. Climate of the Past, 2016, 12, 2195-2213.	3.4	47
88	Modelling the evolution of Vadret da Morteratsch, Switzerland, since the Little Ice Age and into the future. Journal of Glaciology, 2014, 60, 1155-1168.	2.2	46
89	Surface mass-balance changes of the Greenland ice sheetc since 1866. Annals of Glaciology, 2009, 50, 178-184.	1.4	44
90	The response of the Greenland ice sheet to climate changes in the 21st century by interactive coupling of an AOGCM with a thermomechanical ice-sheet model. Annals of Glaciology, 2002, 35, 409-415.	1.4	43

6

#	Article	IF	CITATIONS
91	The Greenland ice sheet through the last glacial-interglacial cycle. Global and Planetary Change, 1991, 4, 385-394.	3.5	40
92	Numerical modelling of historical front variations and the 21st-century evolution of glacier AX010, Nepal Himalaya. Annals of Glaciology, 2009, 50, 27-34.	1.4	40
93	Modelled glacial and non-glacial HCO3â~, Si and Ge fluxes since the LGM: little potential for impact on atmospheric CO2 concentrations and a potential proxy of continental chemical erosion, the marine Ge/Si ratio. Global and Planetary Change, 2002, 33, 139-153.	3.5	38
94	Reconstruction of the annual balance of Vadret da Morteratsch, Switzerland, since 1865. Annals of Glaciology, 2009, 50, 126-134.	1.4	36
95	Modelling of large-scale melt parameters with a regional climate model in south Greenland during the 1991 melt season. Annals of Glaciology, 2002, 35, 391-397.	1.4	35
96	High resolution (1 km) positive degree-day modelling of Greenland ice sheet surface mass balance, 1870–2012 using reanalysis data. Journal of Glaciology, 2017, 63, 176-193.	2.2	35
97	A constraint upon the basal water distribution and thermal state of the Greenland Ice Sheet from radar bed echoes. Cryosphere, 2018, 12, 2831-2854.	3.9	35
98	Impact of Greenland and Antarctic ice sheet interactions on climate sensitivity. Climate Dynamics, 2011, 37, 1005-1018.	3.8	34
99	Surface mass balance of the Greenland ice sheet from climate-analysis data and accumulation/runoff models. Annals of Glaciology, 2002, 35, 67-72.	1.4	32
100	Glacial-Geological/Geomorphological Research in West Greenland Used to Test an Ice-Sheet Model. Quaternary Research, 1995, 44, 317-327.	1.7	29
101	Short term mass variability in Greenland, from GRACE. Geophysical Research Letters, 2005, 32, .	4.0	29
102	Calibration of a higher-order 3-D ice-flow model of the Morteratsch glacier complex, Engadin, Switzerland. Annals of Glaciology, 2013, 54, 343-351.	1.4	28
103	On the climate–geometry imbalance, response time and volume–area scaling of an alpine glacier: insights from a 3-D flow model applied to Vadret da Morteratsch, Switzerland. Annals of Glaciology, 2015, 56, 51-62.	1.4	28
104	Future Sea Level Change Under Coupled Model Intercomparison Project Phase 5 and Phase 6 Scenarios From the Greenland and Antarctic Ice Sheets. Geophysical Research Letters, 2021, 48, e2020GL091741.	4.0	28
105	Millennial total sea-level commitments projected with the Earth system model of intermediate complexity LOVECLIM. Environmental Research Letters, 2012, 7, 045401.	5.2	27
106	Probabilistic parameterisation of the surface mass balance–elevation feedback in regional climate model simulations of the Greenland ice sheet. Cryosphere, 2014, 8, 181-194.	3.9	26
107	Modeling the marine extent of Northern Hemisphere ice sheets during the last glacial cycle. Annals of Glaciology, 2003, 37, 173-180.	1.4	25
108	A three-dimensional climate—ice-sheet model applied to the Last Glacial Maximum. Annals of Glaciology, 1997, 25, 333-339.	1.4	24

#	Article	IF	CITATIONS
109	Evolution of the East Antarctic Ice Sheet: A Numerical Study of Thermo-Mechanical Response Patterns With Changing Climate. Annals of Glaciology, 1988, 11, 52-59.	1.4	23
110	The response of the East Antarctic ice-sheet to the evolving tectonic configuration of the Transantarctic Mountains. Global and Planetary Change, 1999, 23, 213-229.	3.5	23
111	Past and present accumulation rate reconstruction along the Dome Fuji–Kohnen radio-echo sounding profile, Dronning Maud Land, East Antarctica. Annals of Glaciology, 2009, 50, 112-120.	1.4	23
112	A model computation of the temporal changes of surface gravity and geoidal signal induced by the evolving Greenland ice sheet. Geophysical Journal International, 2001, 145, 835-849.	2.4	22
113	The influence of decadal- to millennial-scale ice mass changes on present-day vertical land motion in Greenland: Implications for the interpretation of GPS observations. Journal of Geophysical Research, 2011, 116, .	3.3	22
114	Effect of higher-order stress gradients on the centennial mass evolution of the Greenland ice sheet. Cryosphere, 2013, 7, 183-199.	3.9	22
115	Present-day uplift patterns over Greenland from a coupled ice-sheet/visco-elastic bedrock model. Geophysical Research Letters, 1998, 25, 3951-3954.	4.0	21
116	A comparison of Eulerian and Lagrangian methods for dating in numerical ice-sheet models. Annals of Glaciology, 2003, 37, 150-158.	1.4	21
117	Factors controlling the last interglacial climate as simulated by LOVECLIM1.3. Climate of the Past, 2014, 10, 1541-1565.	3.4	21
118	Improved convergence and stability properties in a three-dimensional higher-order ice sheet model. Geoscientific Model Development, 2011, 4, 1133-1149.	3.6	20
119	An ice-sheet-wide framework for englacial attenuation from ice-penetrating radar data. Cryosphere, 2016, 10, 1547-1570.	3.9	20
120	Estimating surface mass balance patterns from unoccupied aerial vehicle measurements in the ablation area of the Morteratsch–Pers glacier complex (Switzerland). Cryosphere, 2021, 15, 4445-4464.	3.9	20
121	Thermomechanical modelling of Northern Hemisphere ice sheets with a two-level mass-balance parameterization. Annals of Glaciology, 1995, 21, 111-116.	1.4	20
122	Predicted present-day evolution patterns of ice thickness and bedrock elevation over Greenland and Antarctica. Polar Research, 1999, 18, 299-306.	1.6	19
123	Mass budgets of the Lambert, Mellor and Fisher Glaciers and basal fluxes beneath their flowbands on Amery Ice Shelf. Science in China Series D: Earth Sciences, 2007, 50, 1693-1706.	0.9	19
124	Sensitivity, stability and future evolution of the world's northernmost ice cap, Hans Tausen Iskappe (Greenland). Cryosphere, 2017, 11, 805-825.	3.9	17
125	Unravelling the high-altitude Nansen blue ice field meteorite trap (East Antarctica) and implications for regional palaeo-conditions. Geochimica Et Cosmochimica Acta, 2019, 248, 289-310.	3.9	17
126	Accumulation variability and mass budgets of the Lambert Glacier-Amery Ice Shelf system, East Antarctica, at high elevations. Annals of Glaciology, 2006, 43, 351-360.	1.4	16

#	Article	IF	CITATIONS
127	Response of the Greenland and Antarctic Ice Sheets to Multi-Millennial Greenhouse Warming in the Earth System Model of Intermediate Complexity LOVECLIM. Space Sciences Series of ISSI, 2011, , 397-416.	0.0	16
128	Semi-equilibrated global sea-level change projections for the next 10 000 years. Earth System Dynamics, 2020, 11, 953-976.	7.1	16
129	A three-dimensional climate—ice-sheet model applied to the Last Glacial Maximum. Annals of Glaciology, 1997, 25, 333-339.	1.4	15
130	Spatially extensive estimates of annual accumulation in the dry snow zone of the Greenland Ice Sheet determined from radar altimetry. Cryosphere, 2010, 4, 467-474.	3.9	15
131	Evaluating climate model performance with various parameter sets using observations over the recent past. Climate of the Past, 2011, 7, 511-526.	3.4	14
132	Impact of ice sheet meltwater fluxes on the climate evolution at the onset of the Last Interglacial. Climate of the Past, 2016, 12, 1721-1737.	3.4	14
133	Projections of global mean sea level rise calculated with a 2D energy-balance climate model and dynamic ice sheet models. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 49, 486.	1.7	12
134	A comparison of balance velocities, measured velocities and thermomechanically modelled velocities for the Greenland ice sheet. Annals of Glaciology, 2000, 30, 211-216.	1.4	12
135	Statistical modelling of the surface mass-balance variability of the Morteratsch glacier, Switzerland: strong control of early melting season meteorological conditions. Journal of Claciology, 2018, 64, 275-288.	2.2	12
136	Mass budget of the grounded ice in the Lambert Glacier–Amery Ice Shelf system. Annals of Glaciology, 2008, 48, 193-197.	1.4	11
137	Stable dynamics in a Greenland tidewater glacier over 26 years despite reported thinning. Annals of Glaciology, 2012, 53, 241-248.	1.4	10
138	Holocene evolution of Hans Tausen Iskappe (Greenland) and implications for the palaeoclimatic evolution of the high Arctic. Quaternary Science Reviews, 2017, 168, 182-193.	3.0	10
139	Measuring and inferring the ice thickness distribution of four glaciers in the Tien Shan, Kyrgyzstan. Journal of Claciology, 2021, 67, 269-286.	2.2	10
140	Formation and disintegration of the Antarctic ice sheet. Annals of Glaciology, 1994, 20, 336-340.	1.4	10
141	Predicted present-day evolution patterns of ice thickness and bedrock elevation over Greenland and Antarctica. Polar Research, 1999, 18, 299-306.	1.6	9
142	Antarctica: modelling. , 2004, , 491-524.		8
143	Geometric boundary conditions for modelling the velocity field of the Antarctic ice sheet. Annals of Glaciology, 1996, 23, 364-373.	1.4	8
144	Modelling the evolution of Djankuat Glacier, North Caucasus, from 1752 until 2100 CE. Cryosphere, 2020, 14, 4039-4061.	3.9	8

#	Article	IF	CITATIONS
145	Reconstruction of the Historical (1750–2020) Mass Balance of Bordu, Kara-Batkak and Sary-Tor Glaciers in the Inner Tien Shan, Kyrgyzstan. Frontiers in Earth Science, 2021, 9, .	1.8	8
146	Late Quaternary record of sea-level changes in the Antarctic. Geologische Rundschau: Zeitschrift Fur Allgemeine Geologie, 1993, 82, 263.	1.3	7
147	From 14C/12C measurements towards radiocarbon dating of ice. Tellus, Series B: Chemical and Physical Meteorology, 1994, 46, 94-102.	1.6	7
148	A dynamic continental runoff routing model applied to the last Northern Hemisphere deglaciation. Geoscientific Model Development, 2012, 5, 599-609.	3.6	7
149	Century-scale relative sea-level changes in West Greenland — A plausibility study to assess contributions from the cryosphere and the ocean. Earth and Planetary Science Letters, 2012, 315-316, 86-93.	4.4	7
150	lce-dynamic conditions across the grounding zone, Ekströmisen, East Antarctica. Journal of Glaciology, 1999, 45, 384-393.	2.2	6
151	On Characteristic Timescales of Glacier AX010 in the Nepalese Himalaya. Bulletin of Glaciological Research, 2011, 29, 19-29.	1.0	6
152	Modelling evidence for late Eocene Antarctic glaciations. Earth and Planetary Science Letters, 2022, 586, 117532.	4.4	6
153	West-side story of Antarctic ice. Nature, 2009, 458, 295-296.	27.8	5
154	Modelling of the Thermal Conditions at the Greenland Ice Sheet Margin During Holocene Deglaciation: Boundary Conditions for Moraine Formation. Geografiska Annaler, Series A: Physical Geography, 1996, 78, 83-99.	1.5	4
155	Projections of global mean sea level rise calculated with a 2D energy-balance climate model and dynamic ice sheet models. Tellus, Series A: Dynamic Meteorology and Oceanography, 1997, 49, 486-502.	1.7	4
156	13 Flow and balance of the polar ice sheets. , 0, , 1-13.		4
157	Modelled ice-sheet margins of three Greenland ice-sheet models compared with a geological record from ice-marginal deposits in central West Greenland. Annals of Glaciology, 1996, 23, 52-58.	1.4	3
158	Numerical Modelling of Polar Ice Sheets through Time. , 0, , 406-412.		2
159	Estimation of accumulation area ratio of a glacier from multitemporal satellite images using spectral unmixing. , 2009, , .		2
160	A Gaussian process emulator for simulating ice sheet–climate interactions on a multi-million-year timescale: CLISEMv1.0. Geoscientific Model Development, 2021, 14, 6373-6401.	3.6	2
161	Modelling of the Thermal Conditions at the Greenland Ice Sheet Margin during Holocene Deglaciation: Boundary Conditions for Moraine Formation. Geografiska Annaler, Series A: Physical Geography, 1996, 78, 83.	1.5	1
162	Equilibrium State of the Greenland Ice Sheet in the Earth System Model. Russian Meteorology and Hydrology, 2018, 43, 63-71.	1.3	1

#	Article	IF	CITATIONS
163	Correction to "Present-day uplift patterns over Greenland from a coupled ice-sheet/visco-elastic bedrock modelâ€: Geophysical Research Letters, 1999, 26, 139-140.	4.0	0
164	Ice-dynamic conditions across the grounding zone, Ekströmisen, East Antarctica. Journal of Glaciology, 1999, 45, 384-393.	2.2	0