Orly Weinreb

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7853833/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Green tea polyphenol (–)â€epigallocatechinâ€3â€gallate prevents <i>N</i> â€methylâ€4â€phenylâ€1,2,3,6â€tetrahydropyridineâ€induced dopaminergic neurodegeneration. Journa Neurochemistry, 2001, 78, 1073-1082.	l 6 f9	509
2	Neurological mechanisms of green tea polyphenols in Alzheimer's and Parkinson's diseases. Journal of Nutritional Biochemistry, 2004, 15, 506-516.	4.2	434
3	Cell signaling pathways in the neuroprotective actions of the green tea polyphenol (â€)â€epigallocatechinâ€3â€gallate: implications for neurodegenerative diseases. Journal of Neurochemistry, 2004, 88, 1555-1569.	3.9	337
4	Multifunctional Activities of Green Tea Catechins in Neuroprotection. NeuroSignals, 2005, 14, 46-60.	0.9	320
5	Green tea catechins as brain-permeable, natural iron chelators-antioxidants for the treatment of neurodegenerative disorders. Molecular Nutrition and Food Research, 2006, 50, 229-234.	3.3	248
6	Neuroprotective molecular mechanisms of (â^')-epigallocatechin-3-gallate: a reflective outcome of its antioxidant, iron chelating and neuritogenic properties. Genes and Nutrition, 2009, 4, 283-296.	2.5	208
7	Simultaneous Manipulation of Multiple Brain Targets by Green Tea Catechins: A Potential Neuroprotective Strategy for Alzheimer and Parkinson Diseases. CNS Neuroscience and Therapeutics, 2008, 14, 352-365.	3.9	204
8	Neuroprotection via proâ€survival protein kinase C isoforms associated with Bclâ€⊋ family members. FASEB Journal, 2004, 18, 1471-1473.	0.5	181
9	Rasagiline: Neurodegeneration, neuroprotection, and mitochondrial permeability transition. Journal of Neuroscience Research, 2005, 79, 172-179.	2.9	169
10	Targeting dysregulation of brain iron homeostasis in Parkinson's disease by iron chelators. Free Radical Biology and Medicine, 2013, 62, 52-64.	2.9	163
11	Cell Signaling Pathways and Iron Chelation in the Neurorestorative Activity of Green Tea Polyphenols: Special Reference to Epigallocatechin Gallate (EGCC). Journal of Alzheimer's Disease, 2008, 15, 211-222.	2.6	161
12	Regulation of Bclâ€2 family proteins, neurotrophic factors, and APP processing in the neurorescue activity of propargylamine. FASEB Journal, 2005, 19, 1899-1901.	0.5	158
13	Rasagiline: A novel anti-Parkinsonian monoamine oxidase-B inhibitor with neuroprotective activity. Progress in Neurobiology, 2010, 92, 330-344.	5.7	150
14	Understanding the Broad-Spectrum Neuroprotective Action Profile of Green Tea Polyphenols in Aging and Neurodegenerative Diseases. Journal of Alzheimer's Disease, 2011, 25, 187-208.	2.6	129
15	Ladostigil: A Novel Multimodal Neuroprotective Drug with Cholinesterase and Brain-Selective Monoamine Oxidase Inhibitory Activities for Alzheimers Disease Treatment. Current Drug Targets, 2012, 13, 483-494.	2.1	123
16	Neuroprotective and neuritogenic activities of novel multimodal ironâ€chelating drugs in motorâ€neuronâ€like NSCâ€34 cells and transgenic mouse model of amyotrophic lateral sclerosis. FASEB Journal, 2009, 23, 3766-3779.	0.5	121
17	cDNA gene expression profile homology of antioxidants and their antiapoptotic and proapoptotic activities in human neuroblastoma cells. FASEB Journal, 2003, 17, 1-26.	0.5	114
18	Neurorescue Activity, APP Regulation and Amyloid-β Peptide Reduction by Novel Multi-Functional Brain Permeable Iron- Chelating- Antioxidants,M-30 and Green Tea Polyphenol, EGCG. Current Alzheimer Research, 2007, 4, 403-411.	1.4	106

ORLY WEINREB

#	Article	IF	CITATIONS
19	Propargylamine Containing Compounds as Modulators of Proteolytic Cleavage of Amyloid Protein Precursor: Involvement of MAPK and PKC Activation. Journal of Alzheimer's Disease, 2010, 21, 361-371.	2.6	102
20	Multifunctional Neuroprotective Derivatives of Rasagiline as Anti-Alzheimer's Disease Drugs. Neurotherapeutics, 2009, 6, 163-174.	4.4	99
21	Induction of Neurotrophic Factors GDNF and BDNF Associated with the Mechanism of Neurorescue Action of Rasagiline and Ladostigil. Annals of the New York Academy of Sciences, 2007, 1122, 155-168.	3.8	89
22	A multifunctional, neuroprotective drug, ladostigil (TV3326), regulates holoâ€APP translation and processing. FASEB Journal, 2006, 20, 2177-2179.	0.5	82
23	Neuroprotective Multifunctional Iron Chelators: From Redox-Sensitive Process to Novel Therapeutic Opportunities. Antioxidants and Redox Signaling, 2010, 13, 919-949.	5.4	79
24	The Novel Multi-Target Iron Chelating-Radical Scavenging Compound M30 Possesses Beneficial Effects on Major Hallmarks of Alzheimer's Disease. Antioxidants and Redox Signaling, 2012, 17, 860-877.	5.4	74
25	Gene and Protein Expression Profiles of Anti―and Proâ€apoptotic Actions of Dopamine, <i>R</i> â€Apomorphine, Green Tea Polyphenol (â^')â€Epigallocatechineâ€3â€gallate, and Melatonin. Annals of the New York Academy of Sciences, 2003, 993, 351-361.	3.8	72
26	Using cDNA microarray to assess Parkinson's disease models and the effects of neuroprotective drugs. Trends in Pharmacological Sciences, 2003, 24, 184-191.	8.7	71
27	A novel approach of proteomics and transcriptomics to study the mechanism of action of the antioxidant–iron chelator green tea polyphenol (-)-epigallocatechin-3-gallate. Free Radical Biology and Medicine, 2007, 43, 546-556.	2.9	71
28	Neuroprotective and neurorestorative activities of a novel iron chelator-brain selective monoamine oxidase-A/monoamine oxidase-B inhibitor in animal models of Parkinson's disease andÂaging. Neurobiology of Aging, 2015, 36, 1529-1542.	3.1	69
29	Novel Neuroprotective Mechanism of Action of Rasagiline Is Associated with Its Propargyl Moiety: Interaction of Bcl-2 Family Members with PKC Pathway. Annals of the New York Academy of Sciences, 2005, 1053, 348-355.	3.8	68
30	The neuroprotective mechanism of 1â€(<i>R</i>)â€aminoindan, the major metabolite of the antiâ€parkinsonian drug rasagiline. Journal of Neurochemistry, 2010, 112, 1131-1137.	3.9	65
31	Promises of novel multi-target neuroprotective and neurorestorative drugs for Parkinson's disease. Parkinsonism and Related Disorders, 2014, 20, S132-S136.	2.2	65
32	The Novel Cholinesterase–Monoamine Oxidase Inhibitor and Antioxidant, Ladostigil, Confers Neuroprotection in Neuroblastoma Cells and Aged Rats. Journal of Molecular Neuroscience, 2009, 37, 135-145.	2.3	60
33	Iron-chelating backbone coupled with monoamine oxidase inhibitory moiety as novel pluripotential therapeutic agents for Alzheimer's disease: a tribute to Moussa Youdim. Journal of Neural Transmission, 2011, 118, 479-492.	2.8	51
34	The Application of Proteomics and Genomics to the Study of Age-Related Neurodegeneration and Neuroprotection. Antioxidants and Redox Signaling, 2007, 9, 169-179.	5.4	44
35	Multi-target, Neuroprotective and Neurorestorative M30 Improves Cognitive Impairment and Reduces Alzheimer's-Like Neuropathology and Age-Related Alterations in Mice. Molecular Neurobiology, 2012, 46, 217-220.	4.0	39
36	Neuroprotective profile of the multitarget drug rasagiline in Parkinson's disease. International Review of Neurobiology, 2011, 100, 127-149.	2.0	36

ORLY WEINREB

#	Article	IF	CITATIONS
37	Neuroprotective effects of multifaceted hybrid agents targeting MAO, cholinesterase, iron and βâ€amyloid in ageing and Alzheimer's disease. British Journal of Pharmacology, 2016, 173, 2080-2094.	5.4	36
38	The neuroprotective effect of ladostigil against hydrogen peroxide-mediated cytotoxicity. Chemico-Biological Interactions, 2008, 175, 318-326.	4.0	34
39	The application of proteomics for studying the neurorescue activity of the polyphenol (â°')-epigallocatechin-3-gallate. Archives of Biochemistry and Biophysics, 2008, 476, 152-160.	3.0	34
40	Neuroprotection by the multitarget iron chelator M30 on age-related alterations in mice. Mechanisms of Ageing and Development, 2012, 133, 267-274.	4.6	34
41	A Novel Iron Chelator-Radical Scavenger Ameliorates Motor Dysfunction and Improves Life Span and Mitochondrial Biogenesis in SOD1G93A ALS Mice. Neurotoxicity Research, 2017, 31, 230-244.	2.7	34
42	Neuroprotective and neurorestorative potential of propargylamine derivatives in ageing: focus on mitochondrial targets. Journal of Neural Transmission, 2016, 123, 125-135.	2.8	31
43	The effect of chronic co-administration of fluvoxamine and haloperidol compared to clozapine on the GABA system in the rat frontal cortex. International Journal of Neuropsychopharmacology, 2006, 9, 287.	2.1	30
44	The involvement of BDNF-CREB signaling pathways in the pharmacological mechanism of combined SSRI- antipsychotic treatment in schizophrenia. European Neuropsychopharmacology, 2017, 27, 470-483.	0.7	30
45	The novel multitarget iron chelating and propargylamine drug M30 affects APP regulation and processing activities in Alzheimer's disease models. Neuropharmacology, 2017, 123, 359-367.	4.1	30
46	The neuroprotective mechanism of action of the multimodal drug ladostigil. Frontiers in Bioscience - Landmark, 2008, Volume, 5131.	3.0	30
47	Novel Multifunctional Anti-Alzheimer Drugs with Various CNS Neurotransmitter Targets and Neuroprotective Moieties. Current Alzheimer Research, 2007, 4, 522-536.	1.4	28
48	Effect of long-term treatment with rasagiline on cognitive deficits and related molecular cascades in aged mice. Neurobiology of Aging, 2015, 36, 2628-2636.	3.1	26
49	Anti-inflammatory and protective effects of MT-031, a novel multitarget MAO-A and AChE/BuChE inhibitor in scopolamine mouse model and inflammatory cells. Neuropharmacology, 2017, 113, 445-456.	4.1	26
50	The Novel Multi-Target Iron Chelator, M30 Modulates HIF-1α-Related Glycolytic Genes and Insulin Signaling Pathway in the Frontal Cortex of APP/PS1 Alzheimer's Disease Mice. Current Alzheimer Research, 2014, 11, 119-127.	1.4	26
51	Physiological and pathological aspects of AÎ ² in iron homeostasis via 5'UTR in the APP mRNA and the therapeutic use of iron-chelators. BMC Neuroscience, 2008, 9, S2.	1.9	25
52	Design, synthesis and evaluation of novel dual monoamine-cholinesterase inhibitors as potential treatment for Alzheimer's disease. Neuropharmacology, 2016, 109, 376-385.	4.1	25
53	Genomic and proteomic study to survey the mechanism of action of the anti-Parkinson's disease drug, rasagiline compared with selegiline, in the rat midbrain. Journal of Neural Transmission, 2009, 116, 1457-1472.	2.8	24
54	Molecular mechanisms underlying synergistic effects of SSRI–antipsychotic augmentation in treatment of negative symptoms in schizophrenia. Journal of Neural Transmission, 2009, 116, 1529-1541.	2.8	23

ORLY WEINREB

#	Article	IF	CITATIONS
55	Recent advances in amyotrophic lateral sclerosis research: perspectives for personalized clinical application. EPMA Journal, 2010, 1, 343-361.	6.1	21
56	Gene expression changes in peripheral mononuclear cells from schizophrenic patients treated with a combination of antipsychotic with fluvoxamine. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2007, 31, 1356-1362.	4.8	20
57	Iron-Chelating Drugs Enhance Cone Photoreceptor Survival in a Mouse Model of Retinitis Pigmentosa. , 2017, 58, 5287.		20
58	The Multi-Target Drug M30 Shows Pro-Cognitive and Anti-Inflammatory Effects in a Rat Model of Alzheimer's Disease. Journal of Alzheimer's Disease, 2015, 47, 373-383.	2.6	19
59	Beneficial Effects of Multitarget Iron Chelator on Central Nervous System and Gastrocnemius Muscle in SOD1G93A Transgenic ALS Mice. Journal of Molecular Neuroscience, 2016, 59, 504-510.	2.3	18
60	Effects of novel neuroprotective and neurorestorative multifunctional drugs on iron chelation and glucose metabolism. Journal of Neural Transmission, 2013, 120, 37-48.	2.8	16
61	Novel Therapeutic Approach for Neurodegenerative Pathologies: Multitarget Iron-Chelating Drugs Regulating Hypoxia-Inducible Factor 1 Signal Transduction Pathway. Neurodegenerative Diseases, 2012, 10, 112-115.	1.4	12
62	Additive Neuroprotective Effects of the Multifunctional Iron Chelator M30 with Enriched Diet in a Mouse Model of Amyotrophic Lateral Sclerosis. Neurotoxicity Research, 2016, 29, 208-217.	2.7	12
63	Beneficial behavioral, neurochemical and molecular effects of 1-(R)-aminoindan in aged mice. Neuropharmacology, 2015, 99, 264-272.	4.1	10
64	Does 1-(R)-aminoindan Possess Neuroprotective Properties Against Experimental Parkinson's Disease?. Antioxidants and Redox Signaling, 2011, 14, 767-775.	5.4	9
65	Molecular targets of the multifunctional ironâ€chelating drug, <scp>M</scp> 30, in the brains of mouse models of type 2 diabetes mellitus. British Journal of Pharmacology, 2014, 171, 5636-5649.	5.4	9
66	Improvement in verbal memory following SSRI augmentation of antipsychotic treatment is associated with changes in the expression of mRNA encoding for the GABA-A receptor and BDNF in PMC of schizophrenic patients. International Clinical Psychopharmacology, 2015, 30, 158-166.	1.7	8
67	Targeting dysregulation of brain iron homeostasis in ageing. Nutrition and Aging (Amsterdam,) Tj ETQq1 1 0.78	4314 rgBT 0.3	Överlock 10 4
68	Chronic treatment with serotonin reuptake inhibitor antidepressant (SSRI) combined with an antipsychotic regulates GABA-A receptor in rat prefrontal cortex. Psychopharmacology, 2012, 220, 763-770.	3.1	3
69	The Role of GABA-A Receptor in the Synergism Between SSRI and Antipsychotic in Schizophrenia; Implications for Antipsychotic Modes of Actions. Current Medicinal Chemistry, 2013, 20, 363-370.	2.4	3
70	Mitochondria: old and new target in brain research. Journal of Neural Transmission, 2016, 123, 81-82.	2.8	2
71	Recent Advances in ALS Research: Perspectives for Personalized Clinical Application. Advances in Predictive, Preventive and Personalised Medicine, 2013, , 235-274.	0.6	1