Jose Miguel Cerda-Reverter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7853650/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neuropeptides and the control of food intake in fish. General and Comparative Endocrinology, 2005, 142, 3-19.	0.8	511
2	Neuropeptide Y family of peptides: Structure, anatomical expression, function, and molecular evolution. Biochemistry and Cell Biology, 2000, 78, 371-392.	0.9	205
3	Molecular Cloning, Pharmacological Characterization, and Brain Mapping of the Melanocortin 4 Receptor in the Goldfish: Involvement in the Control of Food Intake. Endocrinology, 2003, 144, 2336-2349.	1.4	161
4	The central melanocortin system regulates food intake in goldfish. Regulatory Peptides, 2003, 115, 101-113.	1.9	139
5	Endogenous Melanocortin Antagonist in Fish: Structure, Brain Mapping, and Regulation by Fasting of the Goldfish Agouti-Related Protein Gene. Endocrinology, 2003, 144, 4552-4561.	1.4	130
6	Evolutionary conservation of the structural, pharmacological, and genomic characteristics of the melanocortin receptor subtypes. Peptides, 2005, 26, 1886-1900.	1.2	116
7	Hypothalamic Integration of Metabolic, Endocrine, and Circadian Signals in Fish: Involvement in the Control of Food Intake. Frontiers in Neuroscience, 2017, 11, 354.	1.4	109
8	Central regulation of food intake in fish: an evolutionary perspective. Journal of Molecular Endocrinology, 2018, 60, R171-R199.	1.1	108
9	Expression of long-chain polyunsaturated fatty acid (LC-PUFA) biosynthesis genes during zebrafish Danio rerio early embryogenesis. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2009, 1791, 1093-1101.	1.2	106
10	Fish pigmentation and the melanocortin system. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2017, 211, 26-33.	0.8	102
11	Expression and role of Elovl4 elongases in biosynthesis of very long-chain fatty acids during zebrafish Danio rerio early embryonic development. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2010, 1801, 1145-1154.	1.2	100
12	Fish melanocortin system. European Journal of Pharmacology, 2011, 660, 53-60.	1.7	92
13	Gene Structure of the Goldfish Agouti-Signaling Protein: A Putative Role in the Dorsal-Ventral Pigment Pattern of Fish. Endocrinology, 2005, 146, 1597-1610.	1.4	85
14	A comparative ex vivo and in vivo study of day and night perception in teleosts species using the melatonin rhythm. Journal of Pineal Research, 2006, 41, 42-52.	3.4	82
15	Role of melanocortin receptor accessory proteins in the function of zebrafish melanocortin receptor type 2. Molecular and Cellular Endocrinology, 2010, 320, 145-152.	1.6	81
16	Characterization of neuropeptide Y expression in the brain of a perciform fish, the sea bass (Dicentrarchus labrax). Journal of Chemical Neuroanatomy, 2000, 19, 197-210.	1.0	80
17	Cytoarchitectonic study of the brain of a perciform species, the sea bass (Dicentrarchus labrax). II. The diencephalon. Journal of Morphology, 2001, 247, 229-251.	0.6	80
18	Cytoarchitectonic study of the brain of a perciform species, the sea bass (Dicentrarchus labrax). I. The telencephalon. Journal of Morphology, 2001, 247, 217-228.	0.6	74

#	Article	IF	CITATIONS
19	Effect of different glycaemic conditions on gene expression of neuropeptides involved in control of food intake in rainbow trout; interaction with stress. Journal of Experimental Biology, 2010, 213, 3858-3865.	0.8	74
20	Molecular evolution of the neuropeptide Y (NPY) family of peptides: cloning of three NPY-related peptides from the sea bass (Dicentrarchus labrax). Regulatory Peptides, 2000, 95, 25-34.	1.9	73
21	Stress-induced effects on feeding behavior and growth performance of the sea bass (Dicentrarchus) Tj ETQq1 1 0 Environmental Physiology, 2011, 181, 1035-1044.	.784314 r 0.7	gBT /Overloc 69
22	Molecular characterization of two sea bass gonadotropin receptors: cDNA cloning, expression analysis, and functional activity. Molecular and Cellular Endocrinology, 2007, 272, 63-76.	1.6	67
23	Time-course studies on plasma glucose, insulin, and cortisol in sea bass (Dicentrarchus labrax) held under different photoperiodic regimes. Physiology and Behavior, 1998, 64, 245-250.	1.0	64
24	Melanocortin 4 Receptor Becomes an ACTH Receptor by Coexpression of Melanocortin Receptor Accessory Protein 2. Molecular Endocrinology, 2013, 27, 1934-1945.	3.7	64
25	MELATONIN-SYNTHESIZING ENZYMES IN PINEAL, RETINA, LIVER, AND GUT OF THE GOLDFISH (<i>CARASSIUS</i>): mRNA EXPRESSION PATTERN AND REGULATION OF DAILY RHYTHMS BY LIGHTING CONDITIONS. Chronobiology International, 2010, 27, 1178-1201.	0.9	63
26	Cloning and Expression of Gonadotropin-Releasing Hormone Receptor in the Brain and Pituitary of the European Sea Bass: An In Situ Hybridization Study1. Biology of Reproduction, 2004, 70, 1380-1391.	1.2	62
27	Reduction of sexual maturation in male Dicentrarchus labrax by continuous light both before and during gametogenesis. Aquaculture, 2008, 275, 347-355.	1.7	61
28	Chapter 1 Neuroendocrine Systems of the Fish Brain. Fish Physiology, 2009, 28, 3-74.	0.2	61
29	Phosphodiesterase inhibitor-dependent inverse agonism of agouti-related protein on melanocortin 4 receptor in sea bass (<i>Dicentrarchus labrax</i>). American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 296, R1293-R1306.	0.9	60
30	Lipoprotein lipase (LPL) is highly expressed and active in the ovary of European sea bass (Dicentrarchus) Tj ETQq0 & Integrative Physiology, 2008, 150, 347-354.	0 0 rgBT / 0.8	Overlock 10 58
31	Pigment patterns in adult fish result from superimposition of two largely independent pigmentation mechanisms. Pigment Cell and Melanoma Research, 2015, 28, 196-209.	1.5	55
32	Evolution of the melanocortin system. General and Comparative Endocrinology, 2014, 209, 3-10.	0.8	54
33	Characterization, tissue distribution and regulation by fasting of the agouti family of peptides in the sea bass (Dicentrarchus labrax). General and Comparative Endocrinology, 2014, 205, 251-259.	0.8	53
34	Molecular cloning, characterization and brain mapping of the melanocortin 5 receptor in the goldfish. Journal of Neurochemistry, 2003, 87, 1354-1367.	2.1	46
35	Regulation of the Hypothalamic Melanin-Concentrating Hormone Neurons by Sex Steroids in the Goldfish: Possible Role in the Modulation of Luteinizing Hormone Secretion. Neuroendocrinology, 2006, 84, 364-377.	1.2	45
36	Ghrelin modulates hypothalamic fatty acid-sensing and control of food intake in rainbow trout. Journal of Endocrinology, 2016, 228, 25-37.	1.2	45

#	Article	IF	CITATIONS
37	Countershading in zebrafish results from an Asip1 controlled dorsoventral gradient of pigment cell differentiation. Scientific Reports, 2019, 9, 3449.	1.6	45
38	In situ localization of preprogalanin mRNA in the goldfish brain and changes in its expression during feeding and starvation. General and Comparative Endocrinology, 2004, 136, 200-207.	0.8	43
39	Characterization of the sea bass melanocortin 5 receptor: a putative role in hepatic lipid metabolism. Journal of Experimental Biology, 2009, 212, 3901-3910.	0.8	41
40	Transient Ectopic Overexpression of Agouti-Signalling Protein 1 (Asip1) Induces Pigment Anomalies in Flatfish. PLoS ONE, 2012, 7, e48526.	1.1	41
41	Peptide YY (PYY) and fish pancreatic peptide Y (PY) expression in the brain of the sea bass (Dicentrarchus labrax) as revealed by in situ hybridization. Journal of Comparative Neurology, 2000, 426, 197-208.	0.9	40
42	Molecular characterization and central distribution of the estradiol receptor alpha (ERα) in the sea bass (Dicentrarchus labrax). Journal of Chemical Neuroanatomy, 2008, 35, 33-48.	1.0	38
43	Molecular Characterization and Functional Regulation of Melanocortin 2 Receptor (MC2R) in the Sea Bass. A Putative Role in the Adaptation to Stress. PLoS ONE, 2013, 8, e65450.	1.1	37
44	Molecular and pharmacological characterization of the melanocortin type 1 receptor in the sea bass. General and Comparative Endocrinology, 2010, 165, 163-169.	0.8	35
45	Behind melanocortin antagonist overexpression in the zebrafish brain: A behavioral and transcriptomic approach. Hormones and Behavior, 2016, 82, 87-100.	1.0	34
46	Distribution of estrogen receptor 2 mRNAs (Esr2a and Esr2b) in the brain and pituitary of the sea bass (Dicentrarchus labrax). Brain Research, 2008, 1210, 126-141.	1.1	33
47	Compensatory feeding in the sea bass after fasting and physical stress. Aquaculture, 2010, 298, 332-337.	1.7	33
48	Lossâ€ofâ€function mutations in the melanocortin 1 receptor cause disruption of dorsoâ€ventral countershading in teleost fish. Pigment Cell and Melanoma Research, 2019, 32, 817-828.	1.5	31
49	Development of Enzyme Immunoassays for 3,5,3â€ ² -Triiodo-I-thyronine andI-Thyroxine: Time-Course Studies on the Effect of Food Deprivation on Plasma Thyroid Hormones in Two Marine Teleosts, Sea Bass (Dicentrarchus labraxL) and Sea Bream (Sparus aurataL.). General and Comparative Endocrinology 1996 103 290 300	0.8	30
50	Brain mapping of three somatostatin encoding genes in the goldfish. Journal of Comparative Neurology, 2004, 474, 43-57.	0.9	30
51	A cytoarchitectonic study of the brain of a perciform species, the sea bass (Dicentrarchus labrax): The midbrain and hindbrain. Acta Histochemica, 2008, 110, 433-450.	0.9	30
52	Thyroid Hormones Regulate Zebrafish Melanogenesis in a Gender-Specific Manner. PLoS ONE, 2016, 11, e0166152.	1.1	30
53	Pigment-dispersing activities and cortisol-releasing activities of melanocortins and their receptors in xanthophores and head kidneys of the goldfish Carassius auratus. General and Comparative Endocrinology, 2011, 173, 438-446.	0.8	28
54	Involvement of melanocortin receptor accessory proteins (MRAPs) in the function of melanocortin receptors. General and Comparative Endocrinology, 2013, 188, 133-136.	0.8	24

#	Article	IF	CITATIONS
55	Morphological and Molecular Characterization of Dietary-Induced Pseudo-Albinism during Post-Embryonic Development of Solea senegalensis (Kaup, 1858). PLoS ONE, 2013, 8, e68844.	1.1	24
56	Signal Transduction and Pathogenic Modifications at the Melanocortin-4 Receptor: A Structural Perspective. Frontiers in Endocrinology, 2019, 10, 515.	1.5	24
57	Effects of dopaminergic system activation on feeding behavior and growth performance of the sea bass (Dicentrarchus labrax): A self-feeding approach. Hormones and Behavior, 2013, 64, 113-121.	1.0	23
58	Effects of acute handling stress on short-term central expression of orexigenic/anorexigenic genes in zebrafish. Fish Physiology and Biochemistry, 2018, 44, 257-272.	0.9	23
59	Sex steroid-induced inhibition of food intake in sea bass (Dicentrarchus labrax). Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2009, 179, 77-86.	0.7	21
60	Energetic dependence of NPY-induced LH secretion in a teleost fish (Dicentrarchus labrax). American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1999, 277, R1627-R1634.	0.9	20
61	60 YEARS OF POMC: POMC: an evolutionary perspective. Journal of Molecular Endocrinology, 2016, 56, T113-T118.	1.1	20
62	Expression of genes for melanotropic peptides and their receptors for morphological color change in goldfish Carassius auratus. General and Comparative Endocrinology, 2018, 264, 138-150.	0.8	20
63	Assessment of estrogenic and thyrogenic activities in fish feeds. Aquaculture, 2012, 338-341, 172-180.	1.7	19
64	Melanocortin Receptor Accessory Protein 2-Induced Adrenocorticotropic Hormone Response of Human Melanocortin 4 Receptor. Journal of the Endocrine Society, 2019, 3, 314-323.	0.1	19
65	BAC Recombineering of the <i>Agouti</i> Loci from Spotted Gar and Zebrafish Reveals the Evolutionary Ancestry of Dorsal–Ventral Pigment Asymmetry in Fish. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2017, 328, 697-708.	0.6	18
66	The C-terminal domains of melanocortin-2 receptor (MC2R) accessory proteins (MRAP1) influence their localization and ACTH-induced cAMP production. General and Comparative Endocrinology, 2012, 176, 265-274.	0.8	17
67	Pth4, an ancient parathyroid hormone lost in eutherian mammals, reveals a new brainâ€ŧoâ€bone signaling pathway. FASEB Journal, 2017, 31, 569-583.	0.2	17
68	Identification of Distant Agouti-Like Sequences and Re-Evaluation of the Evolutionary History of the Agouti-Related Peptide (AgRP). PLoS ONE, 2012, 7, e40982.	1.1	17
69	Cloning of Neuropeptide Y, Peptide YY, and Peptide Y from Sea Bass (Dicentrarchus labrax), A Marine Teleosta. Annals of the New York Academy of Sciences, 1998, 839, 493-495.	1.8	15
70	Melanocortin receptor accessory protein 2 (MRAP2) interplays with the zebrafish melanocortin 1 receptor (MC1R) but has no effect on its pharmacological profile. General and Comparative Endocrinology, 2014, 201, 30-36.	0.8	14
71	Cloning the neuropeptide Y Exon 2 from sea bass (Dicentrarchus labrax). Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 1999, 123, 181-186.	0.7	13
72	Sensing Glucose in the Central Melanocortin Circuits of Rainbow Trout: A Morphological Study. Frontiers in Endocrinology, 2019, 10, 254.	1.5	11

#	Article	IF	CITATIONS
73	Glucosensing capacity of rainbow trout telencephalon. Journal of Neuroendocrinology, 2018, 30, e12583.	1.2	10
74	Fish Pigmentation. A Key Issue for the Sustainable Development of Fish Farming. , 2018, , 229-252.		10
75	Molecular cloning and characterization of the matricellular protein Sparc/osteonectin in flatfish, Scophthalmus maximus, and its developmental stage-dependent transcriptional regulation during metamorphosis. Gene, 2015, 568, 129-139.	1.0	9
76	Insights into the Function and Evolution of Taste 1 Receptor Gene Family in the Carnivore Fish Gilthead Seabream (Sparus aurata). International Journal of Molecular Sciences, 2020, 21, 7732.	1.8	9
77	Evolution of proopiomelanocortin. Vitamins and Hormones, 2019, 111, 1-16.	0.7	8
78	Growth Performance After Agouti-Signaling Protein 1 (<i>Asip1</i>) Overexpression in Transgenic Zebrafish. Zebrafish, 2020, 17, 373-381.	0.5	8
79	Brain transcriptome profile after CRISPR-induced ghrelin mutations in zebrafish. Fish Physiology and Biochemistry, 2020, 46, 1-21.	0.9	5
80	Characterization of sea bass FSHβ 5′ flanking region: transcriptional control by 17β-estradiol. Fish Physiology and Biochemistry, 2014, 40, 849-864.	0.9	4
81	Enhanced growth without accelerated puberty in fish: A role for the melanocortin system. Aquaculture, 2021, 540, 736721.	1.7	4
82	Data on the density of xanthophores in a whole scale of goldfish acclimated to white or black background color. Data in Brief, 2017, 14, 724-729.	0.5	3
83	Distribution of two isoforms of tryptophan hydroxylase in the brain of rainbow trout (Oncorhynchus mykiss). An in situ hybridization study. Brain Structure and Function, 2021, 226, 2265-2278.	1.2	3
84	Dietary discrimination using a dual-choice self-feeding system in seabream (Sparus aurata). Aquaculture, 2022, 559, 738449.	1.7	1
85	Spots, not stripes, from just holding on. Pigment Cell and Melanoma Research, 2015, 28, 644-646.	1.5	0