


## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7853293/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Assembling biphenylene into 3D porous metallic carbon allotrope for promising anode of lithium-ion<br>batteries. Carbon, 2022, 188, 95-103.                                                               | 5.4 | 31        |
| 2  | Topological Quantum Cathode Materials for Fast Charging Liâ€Ion Battery Identified by Machine<br>Learning and First Principles Calculation. Advanced Theory and Simulations, 2022, 5, 2100350.            | 1.3 | 4         |
| 3  | Enhancing Electron Emission of Hf with an Ultralow Work Function by Barium–Oxygen Coatings.<br>Journal of Physical Chemistry C, 2022, 126, 2806-2812.                                                     | 1.5 | 2         |
| 4  | Mechanisms of Ionic Diffusion and Stability of the<br>Na <sub>4</sub> MnCr(PO <sub>4</sub> ) <sub>3</sub> Cathode. , 2022, 4, 860-867.                                                                    |     | 13        |
| 5  | Screening Topological Quantum Materials for Na-Ion Battery Cathode. , 2022, 4, 175-180.                                                                                                                   |     | 12        |
| 6  | Recent advances in topological quantum anode materials for metal-ion batteries. Journal of Power<br>Sources, 2022, 540, 231655.                                                                           | 4.0 | 18        |
| 7  | Design of Three-Dimensional Metallic Biphenylene Networks for Na-Ion Battery Anodes with a Record<br>High Capacity. ACS Applied Materials & Interfaces, 2022, 14, 32043-32055.                            | 4.0 | 7         |
| 8  | B <sub>4</sub> Cluster-Based 3D Porous Topological Metal as an Anode Material for Both Li- and<br>Na-Ion Batteries with a Superhigh Capacity. Journal of Physical Chemistry Letters, 2021, 12, 1548-1553. | 2.1 | 16        |
| 9  | Borophene-Based Three-Dimensional Porous Structures as Anode Materials for Alkali Metal-Ion<br>Batteries with Ultrahigh Capacity. Chemistry of Materials, 2021, 33, 2976-2983.                            | 3.2 | 20        |
| 10 | 3D Porous Metallic Boron Carbide Crystal Structure with Excellent Ductility. Advanced Theory and Simulations, 2021, 4, 2100325.                                                                           | 1.3 | 3         |
| 11 | Three-dimensional porous borocarbonitride BC <sub>2</sub> N with negative Poisson's ratio. Journal of Materials Chemistry C, 2020, 8, 15771-15777.                                                        | 2.7 | 5         |
| 12 | A stable metallic 3D porous BPC <sub>2</sub> as a universal anode material for Li, Na, and K ion<br>batteries with high performance. Journal of Materials Chemistry A, 2020, 8, 25824-25830.              | 5.2 | 18        |
| 13 | Three-dimensional porous phosphorus-graphdiyne as a universal anode material for both K- and Ca-ion<br>batteries with high performance. Journal of Power Sources, 2020, 480, 228876.                      | 4.0 | 28        |
| 14 | Assembling Si <sub>2</sub> BN nanoribbons into a 3D porous structure as a universal anode material for both Li- and Na-ion batteries with high performance. Nanoscale, 2020, 12, 19367-19374.             | 2.8 | 25        |
| 15 | A topological semimetal Li <sub>2</sub> CrN <sub>2</sub> sheet as a promising hydrogen storage<br>material. Nanoscale, 2020, 12, 12106-12113.                                                             | 2.8 | 9         |
| 16 | Triphenylene and tetracene based porous sheet: Stability and electronic properties. Computational<br>Materials Science, 2020, 176, 109529.                                                                | 1.4 | 4         |
| 17 | Graphdiyneâ€Based Monolayers as Promising Anchoring Materials for Lithium–Sulfur Batteries: A<br>Theoretical Study. Advanced Theory and Simulations, 2020, 3, 1900236.                                    | 1.3 | 21        |
| 18 | Design of tetracene-based metallic 2D carbon materials for Na- and K-Ion batteries. Applied Surface<br>Science, 2020, 521, 146456.                                                                        | 3.1 | 40        |

Yu Qie

| #  | Article                                                                                                                                                                                              | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Yttrium–Sodium Halides as Promising Solid-State Electrolytes with High Ionic Conductivity and<br>Stability for Na-Ion Batteries. Journal of Physical Chemistry Letters, 2020, 11, 3376-3383.         | 2.1  | 43        |
| 20 | Three dimensional metallic porous SiC4 allotropes: Stability and battery applications. Nano Energy, 2019, 63, 103862.                                                                                | 8.2  | 15        |
| 21 | Tuning the Properties of Tetraceneâ€Based Nanoribbons by Fluorination and Nâ€Đoping. ChemPhysChem, 2019, 20, 2799-2805.                                                                              | 1.0  | 10        |
| 22 | PCF-Graphene: A 2D sp <sup>2</sup> -Hybridized Carbon Allotrope with a Direct Band Gap. Journal of Physical Chemistry C, 2019, 123, 4567-4573.                                                       | 1.5  | 29        |
| 23 | A high-pressure induced stable phase of Li <sub>2</sub> MnSiO <sub>4</sub> as an effective poly-anion cathode material from simulations. Journal of Materials Chemistry A, 2019, 7, 16406-16413.     | 5.2  | 6         |
| 24 | Topological semimetal porous carbon as a high-performance anode for Li-ion batteries. Journal of<br>Materials Chemistry A, 2019, 7, 14253-14259.                                                     | 5.2  | 36        |
| 25 | Lithium Chlorides and Bromides as Promising Solidâ€State Chemistries for Fast Ion Conductors with<br>Good Electrochemical Stability. Angewandte Chemie - International Edition, 2019, 58, 8039-8043. | 7.2  | 322       |
| 26 | A BN analog of two-dimensional triphenylene-graphdiyne: stability and properties. Nanoscale, 2019, 11, 9000-9007.                                                                                    | 2.8  | 12        |
| 27 | Tetragonal C <sub>24</sub> : a topological nodal-surface semimetal with potential as an anode material for sodium ion batteries. Journal of Materials Chemistry A, 2019, 7, 5733-5739.               | 5.2  | 72        |
| 28 | Boron-graphdiyne as an anode material for Li, Na, and K ion batteries with high capacities and low<br>diffusion barriers. Journal of Renewable and Sustainable Energy, 2019, 11, .                   | 0.8  | 42        |
| 29 | Edge-State-Enhanced CO <sub>2</sub> Electroreduction on Topological Nodal-Line Semimetal<br>Cu <sub>2</sub> Si Nanoribbons. Journal of Physical Chemistry C, 2019, 123, 2837-2842.                   | 1.5  | 26        |
| 30 | C3B monolayer as an anchoring material for lithium-sulfur batteries. Carbon, 2018, 129, 38-44.                                                                                                       | 5.4  | 105       |
| 31 | A new porous metallic silicon dicarbide for highly efficient Li-ion battery anode identified by targeted structure search. Carbon, 2018, 140, 680-687.                                               | 5.4  | 25        |
| 32 | Super Atomic Clusters: Design Rules and Potential for Building Blocks of Materials. Chemical Reviews, 2018, 118, 5755-5870.                                                                          | 23.0 | 426       |
| 33 | Cu atomic chains supported on β-borophene sheets for effective CO <sub>2</sub> electroreduction.<br>Nanoscale, 2018, 10, 11064-11071.                                                                | 2.8  | 50        |
| 34 | Discovery of a high-pressure phase of rutile-like CoO <sub>2</sub> and its potential as a cathode material. Journal of Materials Chemistry A, 2018, 6, 18449-18457.                                  | 5.2  | 9         |
| 35 | High-pressure-assisted design of porous topological semimetal carbon for Li-ion battery anode with<br>high-rate performance. Physical Review Materials, 2018, 2, .                                   | 0.9  | 32        |
| 36 | Interpenetrating silicene networks: A topological nodal-line semimetal with potential as an anode<br>material for sodium ion batteries. Physical Review Materials, 2018, 2, .                        | 0.9  | 21        |

Yu Qie

| #  | Article                                                                                                                                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | All-carbon-based porous topological semimetal for Li-ion battery anode material. Proceedings of the<br>National Academy of Sciences of the United States of America, 2017, 114, 651-656.                                                                                                                                                           | 3.3  | 125       |
| 38 | CO <sub>2</sub> Electroreduction Performance of Phthalocyanine Sheet with Mn Dimer: A<br>Theoretical Study. Journal of Physical Chemistry C, 2017, 121, 3963-3969.                                                                                                                                                                                 | 1.5  | 95        |
| 39 | Enhanced CO2 electroreduction on armchair graphene nanoribbons edge-decorated with copper.<br>Nano Research, 2017, 10, 1641-1650.                                                                                                                                                                                                                  | 5.8  | 35        |
| 40 | New allotropes of Li <sub>2</sub> MnO <sub>3</sub> as cathode materials with better cycling performance predicted in high pressure synthesis. Journal of Materials Chemistry A, 2017, 5, 16936-16943.                                                                                                                                              | 5.2  | 17        |
| 41 | Valley-Polarized Quantum Anomalous Hall Effect in Ferrimagnetic Honeycomb Lattices. Physical<br>Review Letters, 2017, 119, 046403.                                                                                                                                                                                                                 | 2.9  | 64        |
| 42 | Recent advances in hybrid grapheneâ€BN planar structures. Wiley Interdisciplinary Reviews:<br>Computational Molecular Science, 2016, 6, 65-82.                                                                                                                                                                                                     | 6.2  | 32        |
| 43 | Curvature-Dependent Selectivity of CO <sub>2</sub> Electrocatalytic Reduction on Cobalt Porphyrin<br>Nanotubes. ACS Catalysis, 2016, 6, 6294-6301.                                                                                                                                                                                                 | 5.5  | 113       |
| 44 | Assembling π-Conjugated Molecules with Negative Gaussian Curvature for Efficient Carbon-Based<br>Metal-Free Thermoelectric Material. Journal of Physical Chemistry C, 2016, 120, 27829-27833.                                                                                                                                                      | 1.5  | 7         |
| 45 | A Honeycomb BeN <sub>2</sub> Sheet with a Desirable Direct Band Gap and High Carrier Mobility.<br>Journal of Physical Chemistry Letters, 2016, 7, 2664-2670.                                                                                                                                                                                       | 2.1  | 100       |
| 46 | Recent Advances in Breaking Scaling Relations for Effective Electrochemical Conversion of CO <sub>2</sub> . Advanced Energy Materials, 2016, 6, 1600463.                                                                                                                                                                                           | 10.2 | 308       |
| 47 | CO <sub>2</sub> Electroreduction Performance of Transition Metal Dimers Supported on Graphene: A<br>Theoretical Study. ACS Catalysis, 2015, 5, 6658-6664.                                                                                                                                                                                          | 5.5  | 227       |
| 48 | Self-consistent determination of Hubbard <mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML"&gt;<mml:mi>U</mml:mi>for explaining<br/>the anomalous magnetism of the Gd<mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML"&gt;<mml:msub><mml:mrow< td=""><td>1.1</td><td>26</td></mml:mrow<></mml:msub></mml:math<br></mml:math<br> | 1.1  | 26        |
| 49 | /> <mml:mn>13</mml:mn> cluster. Physical Review B, 2014, 89, .<br>Functionalized Graphitic Carbon Nitride for Efficient Energy Storage. Journal of Physical Chemistry C,<br>2013, 117, 6055-6059.                                                                                                                                                  | 1.5  | 171       |
| 50 | Solid Oxide Fuel Cell Anode Materials for Direct Hydrocarbon Utilization. Advanced Energy Materials,<br>2012, 2, 1156-1181.                                                                                                                                                                                                                        | 10.2 | 253       |
| 51 | Sc-phthalocyanine sheet: Promising material for hydrogen storage. Applied Physics Letters, 2011, 99, .                                                                                                                                                                                                                                             | 1.5  | 32        |
| 52 | Electronic structures and bonding of graphyne sheet and its BN analog. Journal of Chemical Physics, 2011, 134, 174701.                                                                                                                                                                                                                             | 1.2  | 182       |
| 53 | Enhanced Hydrogen Storage on Li Functionalized BC <sub>3</sub> Nanotube. Journal of Physical<br>Chemistry C, 2011, 115, 6136-6140.                                                                                                                                                                                                                 | 1.5  | 38        |
| 54 | Tripyrrylmethane based 2D porous structure for hydrogen storage. Frontiers of Physics, 2011, 6, 220-223.                                                                                                                                                                                                                                           | 2.4  | 6         |

Yu Qie

| #  | Article                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Research in renewable energy materials: The fundamental physics and chemistry China. Frontiers of Physics, 2011, 6, 141-141.                                               | 2.4 | 0         |
| 56 | Intrinsic ferromagnetism in two-dimensional carbon structures: Triangular graphene nanoflakes<br>linked by carbon chains. Physical Review B, 2011, 84, .                   | 1.1 | 40        |
| 57 | Probing the existence of energetically degenerate cluster isomers by chemical tagging. Applied Physics<br>Letters, 2010, 97, 223104.                                       | 1.5 | 1         |
| 58 | Electronic and magnetic properties of a BN sheet decorated with hydrogen and fluorine. Physical Review B, 2010, 81, .                                                      | 1.1 | 278       |
| 59 | Geometry, Electronic Properties, and Hydrogen Adsorption Properties of Li <sub>3</sub> N-Based<br>Nanostructures. Journal of Physical Chemistry C, 2010, 114, 19202-19205. | 1.5 | 8         |
| 60 | COMPUTATIONAL DESIGN OF NANOMATERIALS FOR HYDROGEN STORAGE. , 2009, , .                                                                                                    |     | 2         |
| 61 | Theoretical Study of Hydrogen Storage in Ca-Coated Fullerenes. Journal of Chemical Theory and Computation, 2009, 5, 374-379.                                               | 2.3 | 130       |
| 62 | Functionalized heterofullerenes for hydrogen storage. Applied Physics Letters, 2009, 94, .                                                                                 | 1.5 | 89        |
| 63 | Dependence of Magnetism on Doping Concentration in V-Doped Bulk ZnO. Materials Transactions, 2008, 49, 2469-2473.                                                          | 0.4 | 6         |
| 64 | Clustering of Ti on a C60Surface and Its Effect on Hydrogen Storage. Journal of the American<br>Chemical Society, 2005, 127, 14582-14583.                                  | 6.6 | 675       |
| 65 | Storage of Molecular Hydrogen in Bâ^'N Cage:  Energetics and Thermal Stability. Nano Letters, 2005, 5,<br>1273-1277.                                                       | 4.5 | 106       |
| 66 | Energetics and local spin magnetic moment of single3,4dimpurities encapsulated in an icosahedralAu12cage. Physical Review B, 2004, 70, .                                   | 1.1 | 69        |
| 67 | Interactions of Au cluster anions with oxygen. Journal of Chemical Physics, 2004, 120, 6510-6515.                                                                          | 1.2 | 107       |
| 68 | A Stable Threeâ€Dimensional Porous Carbon as a Highâ€Performance Anode Material for Lithium, Sodium,                                                                       | 1.3 | 1         |

<sup>8</sup> and Potassium Ion Batteries. Advanced Theory and Simulations, 0, , 2200230.