Guy Brammertz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7853232/publications.pdf

Version: 2024-02-01

182 papers 4,016 citations

147801 31 h-index 54 g-index

184 all docs

184 docs citations

times ranked

184

3446 citing authors

#	Article	IF	CITATIONS
1	A Novel Strategy for the Application of an Oxide Layer to the Front Interface of Cu(In,Ga)Se ₂ Thin Film Solar Cells: Al ₂ O ₃ /HfO ₂ Multi-Stack Design With Contact Openings. IEEE Journal of Photovoltaics, 2022, 12, 301-308.	2.5	4
2	Relevance of Ge incorporation to control the physical behaviour of point defects in kesterite. Journal of Materials Chemistry A, 2022, 10, 4355-4365.	10.3	7
3	Comparison of a bottom-up and a top-down approach for the creation of contact openings in a multi-stack oxide layer at the front interface of Cu(In,Ga)Se2. Solar Energy, 2022, 237, 161-172.	6.1	1
4	The path towards efficient wide band gap thin-film kesterite solar cells with transparent back contact for viable tandem application. Solar Energy Materials and Solar Cells, 2021, 219, 110824.	6.2	17
5	Revealing the electronic structure, heterojunction band offset and alignment of Cu2ZnGeSe4: a combined experimental and computational study towards photovoltaic applications. Physical Chemistry Chemical Physics, 2021, 23, 9553-9560.	2.8	6
6	Novel cost-effective approach to produce nano-sized contact openings in an aluminum oxide passivation layer up to 30 nm thick for CIGS solar cells. Journal Physics D: Applied Physics, 2021, 54, 234004.	2.8	4
7	Bias dependent admittance spectroscopy: the impact of sodium supply on the Cu(In,Ga)Se2 growth , 2021, , .		O
8	On the Importance of Joint Mitigation Strategies for Front, Bulk, and Rear Recombination in Ultrathin Cu(In,Ga)Se ₂ Solar Cells. ACS Applied Materials & Samp; Interfaces, 2021, 13, 27713-27725.	8.0	11
9	Comparative Study of Al ₂ O ₃ and HfO ₂ for Surface Passivation of Cu(ln,Ga)Se ₂ Thin Films: An Innovative Al ₂ O ₃ /HfO ₂ Multistack Design. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2100073.	1.8	5
10	A multi-stack Al ₂ O ₃ /HfO ₂ design with contact openings for front surface of Cu(In,Ga)Se ₂ solar cells. , 2021, , .		1
11	Opto-electronic properties and solar cell efficiency modelling of Cu ₂ ZnXS ₄ (X = Sn, Ge, Si) kesterites. JPhys Energy, 2021, 3, 035005.	5.3	9
12	Detrimental Impact of Na Upon Rb Postdeposition Treatments of Cu(In,Ga)Se 2 Absorber Layers. Solar Rrl, 2021, 5, 2100390.	5.8	4
13	Ultrathin Cu(In,Ga)Se2 Solar Cells with Ag/AlOx Passivating Back Reflector. Energies, 2021, 14, 4268.	3.1	4
14	Dominant Processing Factors in Two-Step Fabrication of Pure Sulfide CIGS Absorbers. Energies, 2021, 14, 4737.	3.1	4
15	Bias dependent admittance spectroscopy of thin film solar cells: KF post deposition treatment, accelerated lifetime testing, and their effect on the CVf loss maps. Solar Energy Materials and Solar Cells, 2021, 231, 111289.	6.2	1
16	Detailed Insight into the CZTS/CdS Interface Modification by Air Annealing in Monograin Layer Solar Cells. ACS Applied Energy Materials, 2021, 4, 12374-12382.	5.1	19
17	Investigating the experimental space for two-step Cu(In,Ga)(S,Se)2 absorber layer fabrication: A design of experiment approach. Thin Solid Films, 2021, 738, 138958.	1.8	3
18	KF Postdeposition Treatment in N ₂ of Single-Stage Thin Cu(In,Ga)Se ₂ Absorber Layers. IEEE Journal of Photovoltaics, 2020, 10, 255-258.	2.5	3

#	Article	IF	Citations
19	Innovative and industrially viable approach to fabricate AlOx rear passivated ultra-thin Cu(In, Ga)Se2 (CIGS) solar cells. Solar Energy, 2020, 207, 1002-1008.	6.1	23
20	Intermediate scale bandgap fluctuations in ultrathin Cu(In,Ga)Se2 absorber layers. Journal of Applied Physics, 2020, 128, 163102.	2.5	5
21	Study of Ammonium Sulfide Surface Treatment for Ultrathin Cu(In,Ga)Se ₂ with Different Cu/(Ga + In) Ratios. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 2000307.	1.8	5
22	Rear surface passivation of ultra-thin CIGS solar cells using atomic layer deposited HfO $<$ sub $>$ x $<$ /sub $>$. EPJ Photovoltaics, 2020, 11, 10.	1.6	17
23	Numerical modelling of the performance-limiting factors in CZGSe solar cells. Journal Physics D: Applied Physics, 2020, 53, 385102.	2.8	7
24	Inclusion of Water in Cu(In, Ga)Se2 Absorber Material During Accelerated Lifetime Testing. ACS Applied Energy Materials, 2020, 3, 5120-5125.	5.1	14
25	Sn Substitution by Ge: Strategies to Overcome the Open-Circuit Voltage Deficit of Kesterite Solar Cells. ACS Applied Energy Materials, 2020, 3, 5830-5839.	5.1	32
26	Bias-Dependent Admittance Spectroscopy of Thin-Film Solar Cells: Experiment and Simulation. IEEE Journal of Photovoltaics, 2020, 10, 1102-1111.	2.5	13
27	Stability, reliability, upscaling and possible technological applications of kesterite solar cells. JPhys Energy, 2020, 2, 024009.	5.3	12
28	Study of (AgxCu1â^'x)2ZnSn(S,Se)4 monograins synthesized by molten salt method for solar cell applications. Solar Energy, 2020, 198, 586-595.	6.1	14
29	High <i>V</i> _{oc} upon KF Post-Deposition Treatment for Ultrathin Single-Stage Coevaporated Cu(In, Ga)Se ₂ Solar Cells. ACS Applied Energy Materials, 2019, 2, 6102-6111.	5.1	22
30	Wide band gap kesterite absorbers for thin film solar cells: potential and challenges for their deployment in tandem devices. Sustainable Energy and Fuels, 2019, 3, 2246-2259.	4.9	19
31	Physical routes for the synthesis of kesterite. JPhys Energy, 2019, 1, 042003.	5.3	34
32	Room temperature photoluminescence analysis of alkali treated single-stage thin Cu(In,Ga)Se2 absorber layers. , 2019, , .		0
33	A study of the degradation mechanisms of ultra-thin CIGS solar cells submitted to a damp heat environment. , 2019, , .		1
34	Study of Room Temperature Photoluminescence For 1-stage Co-Evaporated Ultra-Thin Cu(In,Ga)Se2 Solar Cells. , 2019, , .		0
35	Crystallization properties of Cu2ZnGeSe4. Thin Solid Films, 2019, 670, 76-79.	1.8	10
36	Alkali treatment for single-stage co-evaporated thin Culn0.7Ga0.3Se2 solar cells. Thin Solid Films, 2019, 671, 44-48.	1.8	13

#	Article	IF	Citations
37	A study to improve light confinement and rear-surface passivation in a thin-Cu(In, Ga)Se2 solar cell. Thin Solid Films, 2019, 669, 399-403.	1.8	18
38	Challenge in Cu-rich <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>CuInSe</mml:mi><mml:mn>2<td>ıml2mn><!--</td--><td>mn217msub><!--</td--></td></td></mml:mn></mml:msub></mml:math>	ıml 2m n> </td <td>mn217msub><!--</td--></td>	mn 217 msub> </td
39	Doping of Cu2ZnSnSe4 solar cells with Na+ or K+ alkali ions. Journal of Materials Chemistry A, 2018, 6, 2653-2663.	10.3	19
40	Selenium and Sulphur replacement dynamics in CZTSSe and CZGSSe kesterite materials., 2018,,.		0
41	Wet Processing in State-of-the-Art Cu(In,Ga)(S,Se) ₂ Thin Film Solar Cells. Solid State Phenomena, 2018, 282, 300-305.	0.3	3
42	Fabrication of high band gap kesterite solar cell absorber materials for tandem applications. Thin Solid Films, 2018, 660, 247-252.	1.8	13
43	7.6% CZGSe Solar Cells Thanks to Optimized CdS Chemical Bath Deposition. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800043.	1.8	36
44	Pâ€"N Junction Passivation in Kesterite Solar Cells by Use of Solution-Processed TiO2 Layer. IEEE Journal of Photovoltaics, 2017, 7, 1130-1135.	2.5	11
45	Synthesis and characterization of (Cd,Zn)S buffer layer for Cu2ZnSnSe4solar cells. Journal Physics D: Applied Physics, 2017, 50, 285501.	2.8	12
46	Modelling of Cu ₂ ZnSnSe ₄ -CdS-ZnO thin film solar cell. Materials Research Express, 2017, 4, 116403.	1.6	1
47	Optoelectronic properties of thin film Cu2ZnGeSe4 solar cells. Solar Energy Materials and Solar Cells, 2017, 171, 136-141.	6.2	43
48	Effect of different alkali (Li, Na, K, Rb, Cs) metals on Cu 2 ZnSnSe 4 solar cells. Thin Solid Films, 2017, 633, 156-161.	1.8	52
49	Effect of Sn/Zn/Cu precursor stack thickness on two-step processed kesterite solar cells. Thin Solid Films, 2017, 633, 127-130.	1.8	8
50	Effect of ammonium sulfide treatments on the surface properties of Cu2ZnSnSe4 thin films. Thin Solid Films, 2017, 633, 135-140.	1.8	7
51	Effect of the duration of a wet KCN etching step and post deposition annealing on the efficiency of Cu 2 ZnSnSe 4 solar cells. Thin Solid Films, 2017, 633, 166-171.	1.8	4
52	Improvement of kesterite solar cell performance by solution synthesized MoO ₃ interfacial layer. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600534.	1.8	29
53	Fabrication of ternary and quaternary chalcogenide compounds based on Cu, Zn, Sn and Si for thin film photovoltaic applications. Physica Status Solidi C: Current Topics in Solid State Physics, 2017, 14, .	0.8	6
54	Effect of Cu content and temperature on the properties of Cu ₂ ZnSnSe ₄ solar cells. EPJ Photovoltaics, 2016, 7, 70304.	1.6	8

#	Article	IF	CITATIONS
55	Oxygen-Induced Degradation in C60-Based Organic Solar Cells: Relation Between Film Properties and Device Performance. ACS Applied Materials & Interfaces, 2016, 8, 9798-9805.	8.0	12
56	Progress in Cleaning and Wet Processing for Kesterite Thin Film Solar Cells. Solid State Phenomena, 2016, 255, 348-353.	0.3	2
57	Fabrication and characterization of ternary Cu8SiS6 and Cu8SiSe6 thin film layers for optoelectronic applications. Thin Solid Films, 2016, 616, 649-654.	1.8	6
58	Multistep deposition of Cu ₂ Si(S,Se) ₃ and Cu ₂ ZnSiSe ₄ high band gap absorber materials for thin film solar cells. Physica Status Solidi - Rapid Research Letters, 2015, 9, 338-343.	2.4	8
59	KCN Chemical Etch for Interface Engineering in Cu ₂ ZnSnSe ₄ Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 14690-14698.	8.0	62
60	Process variability in Cu2ZnSnSe4 solar cell devices: Electrical and structural investigations. , 2015, , .		1
61	In-situ monitoring of the accelerated performance degradation of thin film solar cells. , 2015, , .		4
62	Development of co-evaporated In2S3 buffer layer for Cu2ZnSnSe4 thin film solar cells. , 2015, , .		2
63	Photoluminescence study and observation of unusual optical transitions in Cu2ZnSnSe4/CdS/ZnO solar cells. Solar Energy Materials and Solar Cells, 2015, 134, 340-345.	6.2	33
64	Study of alternative back contacts for thin film Cu ₂ ZnSnSe ₄ -based solar cells. Journal Physics D: Applied Physics, 2015, 48, 035103.	2.8	29
65	Impact of the Cd ²⁺ treatment on the electrical properties of Cu ₂ ZnSnSe ₄ and Cu(In,Ga)Se ₂ solar cells. Progress in Photovoltaics: Research and Applications, 2015, 23, 1608-1620.	8.1	28
66	High efficiency perovskite solar cells using a PCBM/ZnO double electron transport layer and a short air-aging step. Organic Electronics, 2015, 26, 30-35.	2.6	92
67	Refractive index extraction and thickness optimization of Cu ₂ ZnSnSe ₄ thin film solar cells. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 1984-1990.	1.8	47
68	Effect of selenium content of CulnSex alloy nanopowder precursors on recrystallization of printed CulnSe2 absorber layers during selenization heat treatment. Thin Solid Films, 2015, 582, 11-17.	1.8	9
69	Investigation of Properties Limiting Efficiency in Cu _{2klt;/sub>ZnSnSe₄-Based Solar Cells. IEEE Journal of Photovoltaics, 2015, 5, 649-655.}	2.5	20
70	Physical and electrical characterization of high-performance Cu 2 ZnSnSe 4 based thin film solar cells. Thin Solid Films, 2015, 582, 224-228.	1.8	55
71	Surface Cleaning and Passivation Using (NH ₄) ₂ S Treatment for Cu(ln,Ga)Se ₂ Solar Cells: A Safe Alternative to KCN. Advanced Energy Materials, 2015, 5, 1401689.	19.5	36
72	Selenization of printed Cu–In–Se alloy nanopowder layers for fabrication of CuInSe2 thin film solar cells. Thin Solid Films, 2015, 582, 18-22.	1.8	11

#	Article	IF	Citations
73	Physical characterization of Cu2ZnGeSe4 thin films from annealing of Cu–Zn–Ge precursor layers. Thin Solid Films, 2015, 582, 171-175.	1.8	31
74	Spectral current–voltage analysis of kesterite solar cells. Journal Physics D: Applied Physics, 2014, 47, 175101.	2.8	33
75	Microstructural analysis of 9.7% efficient Cu2ZnSnSe4 thin film solar cells. Applied Physics Letters, 2014, 105, .	3.3	19
76	Mechanical synthesis of high purity Cu–In–Se alloy nanopowder as precursor for printed CISe thin film solar cells. Advanced Powder Technology, 2014, 25, 1254-1261.	4.1	10
77	Characterization of defects in 9.7% efficient Cu2ZnSnSe4-CdS-ZnO solar cells. Applied Physics Letters, 2013, 103, .	3.3	199
78	Electrical characterization of Cu2ZnSnSe4 solar cells from selenization of sputtered metal layers. Thin Solid Films, 2013, 535, 348-352.	1.8	27
79	Border Traps in Ge/III–V Channel Devices: Analysis and Reliability Aspects. IEEE Transactions on Device and Materials Reliability, 2013, 13, 444-455.	2.0	70
80	Analysis of border traps in high-к gate dielectrics on high-mobility channels. , 2013, , .		0
81	Correlation between physical, electrical, and optical properties of Cu2ZnSnSe4 based solar cells. Applied Physics Letters, 2013, 102, 013902.	3.3	51
82	$Recombination \ stability \ in \ polycrystalline \ Cu2ZnSnSe4\ thin \ films.\ , \ 2013,\ , \ .$		10
83	Trimethylaluminum-based Atomic Layer Deposition of MO2 (M=Zr, Hf): Gate Dielectrics on In0.53Ga0.47As(001) Substrates. ECS Transactions, 2013, 50, 11-19.	0.5	1
84	Integration of InGaAs Channel n-MOS Devices on 200mm Si Wafers Using the Aspect-Ratio-Trapping Technique. ECS Transactions, 2012, 45, 115-128.	0.5	39
85	InGaAs MOS Transistors Fabricated through a Digital-Etch Gate-Recess Process and the Influence of Forming Gas Anneal on Their Electrical Behavior. ECS Journal of Solid State Science and Technology, 2012, 1, P310-P314.	1.8	10
86	Oxide Trapping in the InGaAs–\$hbox{Al}_{2} hbox{O}_{3}\$ System and the Role of Sulfur in Reducing the \$ hbox{Al}_{2}hbox{O}_{3}\$ Trap Density. IEEE Electron Device Letters, 2012, 33, 1544-1546.	3.9	23
87	Challenges for introducing Ge and III/V devices into CMOS technologies. , 2012, , .		4
88	Preparation of microflake ink for low cost printing of CIS-Se absorber layers. , 2012, , .		0
89	Improved AC conductance and Gray-Brown methods to characterize fast and slow traps in Ge metal–oxide–semiconductor capacitors. Journal of Applied Physics, 2012, 111, 054102.	2.5	12
90	AC Transconductance Dispersion (ACGD): A Method to Profile Oxide Traps in MOSFETs Without Body Contact. IEEE Electron Device Letters, 2012, 33, 438-440.	3.9	25

#	Article	IF	Citations
91	Integration of III-V on Si for High-Mobility CMOS. , 2012, , .		8
92	Reconstruction dependent reactivity of As-decapped In0.53Ga0.47As(001) surfaces and its influence on the electrical quality of the interface with Al2O3 grown by atomic layer deposition. Applied Physics Letters, 2011, 99, .	3.3	11
93	Transitivity of band offsets between semiconductor heterojunctions and oxide insulators. Applied Physics Letters, 2011, 99, .	3.3	20
94	Advancing CMOS beyond the Si roadmap with Ge and III/V devices. , 2011, , .		43
95	Electrical Characterization of \$hbox{Al}_{2} hbox{O}_{3}\$/n-InAs Metal–Oxide–Semiconductor Capacitors With Various Surface Treatments. IEEE Electron Device Letters, 2011, 32, 752-754.	3.9	26
96	Experimental and Modeling on Atomic Layer Deposition Al2O3/n-InAs Metal-Oxide-Semiconductor Capacitors with Various Surface Treatments. ECS Transactions, 2011, 34, 1041-1046.	0.5	1
97	S-passivation of the Ge gate stack: Tuning the gate stack properties by changing the atomic layer deposition oxidant precursor. Journal of Applied Physics, 2011, 110, 084907.	2.5	17
98	A Combined Interface and Border Trap Model for High-Mobility Substrate Metalâ€"Oxideâ€"Semiconductor Devices Applied to \$hbox{In}_{0.53} hbox{Ga}_{0.47}hbox{As}\$ and InP Capacitors. IEEE Transactions on Electron Devices, 2011, 58, 3890-3897.	3.0	96
99	Largeâ€nrea, catalystâ€free heteroepitaxy of InAs nanowires on Si by MOVPE. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 129-135.	1.8	17
100	Effects of surface passivation during atomic layer deposition of Al2O3 on In0.53Ga0.47As substrates. Microelectronic Engineering, 2011, 88, 431-434.	2.4	16
101	H2S molecular beam passivation of Ge(001). Microelectronic Engineering, 2011, 88, 399-402.	2.4	8
102	Silicon and selenium implantation and activation in In0.53Ga0.47As under low thermal budget conditions. Microelectronic Engineering, 2011, 88, 155-158.	2.4	20
103	Al2O3 stacks on In0.53Ga0.47As substrates: In situ investigation of the interface. Microelectronic Engineering, 2011, 88, 435-439.	2.4	4
104	Growth of high quality InP layers in STI trenches on miscut Si (001) substrates. Journal of Crystal Growth, 2011, 315, 32-36.	1.5	17
105	Defect density reduction of the Al2O3/GaAs(001) interface by using H2S molecular beam passivation. Surface Science, 2011, 605, 1778-1783.	1.9	10
106	Ammonium sulfide vapor passivation of In0.53Ga0.47As and InP surfaces. Applied Physics Letters, 2011, 99, .	3.3	26
107	GaSb molecular beam epitaxial growth onp-InP(001) and passivation within situdeposited Al2O3gate oxide. Journal of Applied Physics, 2011, 109, 073719.	2.5	40
108	Improved Performance of In\$_{0.53}\$Ga\$_{0.47}\$As-Based Metal–Oxide–Semiconductor Capacitors with Al:ZrO\$_{2}\$ Gate Dielectric Grown by Atomic Layer Deposition. Applied Physics Express, 2011, 4, 094103.	2.4	5

#	Article	IF	CITATIONS
109	Electrical Quality of III-V/Oxide Interfaces: Good Enough for MOSFET Devices. ECS Transactions, 2011, 34, 1017-1022.	0.5	0
110	Selective Area Growth of InP and Defect Elimination on Si (001) Substrates. Journal of the Electrochemical Society, 2011, 158, H645.	2.9	21
111	Atomic Layer Deposition of High- $\hat{\mathbb{P}}^0$ Dielectrics on Sulphur-Passivated Germanium. Journal of the Electrochemical Society, 2011, 158, H687.	2.9	18
112	(Invited) Active Trap Determination at the Interface of Ge and In0.53Ga0.47 as Substrates with Dielectric Layers. ECS Transactions, 2011, 41, 203-221.	0.5	3
113	Ge Chemical Vapor Deposition on GaAs for Low Resistivity Contacts. Journal of the Electrochemical Society, 2011, 158, H203.	2.9	2
114	Electrical Characterization of the MOS (Metal-Oxide-Semiconductor) System: High Mobility Substrates. ECS Transactions, 2011, 34, 1065-1070.	0.5	10
115	Interface and Border Traps in Ge-Based Gate Stacks. ECS Transactions, 2011, 35, 465-480.	0.5	10
116	Heterogeneous Integration and Fabrication of III-V MOS Devices in a 200mm Processing Environment. ECS Transactions, 2011, 35, 299-309.	0.5	5
117	Low temperature Si homo-epitaxy by reduced pressure chemical vapor deposition using dichlorosilane, silane and trisilane. Journal of Crystal Growth, 2010, 312, 2671-2676.	1.5	33
118	Suitability Study of Oxide/Gallium Arsenide Interfaces for MOSFET Applications. IEEE Transactions on Electron Devices, 2010, 57, 2944-2956.	3.0	41
119	Impact of interface state trap density on the performance characteristics of different III–V MOSFET architectures. Microelectronics Reliability, 2010, 50, 360-364.	1.7	27
120	Interface analysis of Ge ultra thin layers intercalated between GaAs substrates and oxide stacks. Thin Solid Films, 2010, 518, S123-S127.	1.8	6
121	Electrical characterization of InGaAs ultra-shallow junctions. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, C1C41-C1C47.	1.2	6
122	Shaping the future of nanoelectronics beyond the Si roadmap with new materials and devices. Proceedings of SPIE, 2010, , .	0.8	2
123	Selective Epitaxial Growth of InP in STI Trenches on Off-Axis Si (001) Substrates. ECS Transactions, 2010, 27, 959-964.	0.5	13
124	ALD on High Mobility Channels: Engineering the Proper Gate Stack Passivation. ECS Transactions, 2010, 33, 9-23.	0.5	4
125	Selective Area Growth of InP in Shallow-Trench-Isolated Structures on Off-Axis Si(001) Substrates. Journal of the Electrochemical Society, 2010, 157, H1023.	2.9	28
126	Selective area growth of high quality InP on Si (001) substrates. Applied Physics Letters, 2010, 97, .	3.3	49

#	Article	IF	CITATIONS
127	(Invited) Exploring the ALD Al ₂ O ₃ /In _{0.53} Ga _{0.47} As and Al ₂ O ₃ /Se Interface Properties: A Common Gate Stack Approach for Advanced III-V/Ge CMOS. ECS Transactions, 2010, 28, 173-183.	0.5	16
128	High Quality Ge Virtual Substrates on Si Wafers with Standard STI Patterning. Journal of the Electrochemical Society, 2010, 157, H13.	2.9	83
129	Great reduction of interfacial traps in Al $<$ inf $>$ 2 $<$ /inf $>$ 0 $<$ inf $>$ 3 $<$ /inf $>$ /GaAs (100) starting with Ga-rich surface and through systematic thermal annealing. , 2010, , .		O
130	(Invited) Selective Epitaxial Growth of III-V Semiconductor Heterostructures on Si Substrates for Logic Applications. ECS Transactions, 2010, 33, 933-939.	0.5	9
131	Influence of interface traps on high-mobility channel performance. , 2010, , .		0
132	On the interface state density at In0.53Ga0.47As/oxide interfaces. Applied Physics Letters, 2009, 95, .	3.3	99
133	Optical characterization of thin epitaxial GaAs films on Ge substrates. Journal of Applied Physics, 2009, 106, 023505.	2.5	4
134	Ge and III/V devices for advanced CMOS. , 2009, , .		3
135	The Fermi-level efficiency method and its applications on high interface trap density oxide-semiconductor interfaces. Applied Physics Letters, 2009, 94, .	3.3	50
136	A DLTS study of Pt/Al2O3/InxGa1 - xAs Capacitors. ECS Transactions, 2009, 25, 151-161.	0.5	4
137	Interface quality of atomic layer deposited La-doped ZrO2 films on Ge-passivated In0.15Ga0.85As substrates. Materials Research Society Symposia Proceedings, 2009, 1194, 80.	0.1	0
138	Molecular Beam Epitaxy study of a common a-GeO2 interfacial passivation layer for Ge- and GaAs-based MOS heterostructures. Materials Research Society Symposia Proceedings, 2009, 1155, 1.	0.1	2
139	High Mobility Channel Materials and Novel Devices for Scaling of Nanoelectronics beyond the Si Roadmap. Materials Research Society Symposia Proceedings, 2009, 1194, 49.	0.1	0
140	Thermal and Plasma Enhanced Atomic Layer Deposition of Al[sub 2]O[sub 3] on GaAs Substrates. Journal of the Electrochemical Society, 2009, 156, H255.	2.9	17
141	Ge-based interface passivation for atomic layer deposited La-doped ZrO2 on III-V compound (GaAs,In0.15Ga0.85As) substrates. Applied Physics Letters, 2009, 95, 023507.	3.3	25
142	Controlled III/V Nanowire Growth by Selective-Area Vapour Phase Epitaxy. ECS Transactions, 2009, 19, 309-329.	0.5	2
143	Controlled III/V Nanowire Growth by Selective-Area Vapor-Phase Epitaxy. Journal of the Electrochemical Society, 2009, 156, H860.	2.9	27
144	High-k Dielectrics and Interface Passivation for Ge and III/V Devices on Silicon for Advanced CMOS. ECS Transactions, 2009, 25, 51-65.	0.5	1

#	Article	IF	Citations
145	Epitaxial Ge on Standard STI Patterned Si Wafers: High Quality Virtual Substrates for Ge pMOS and III/V nMOS. ECS Transactions, 2009, 25, 335-350.	0.5	11
146	Catalytic Forming Gas Anneal on III-V/Ge MOS Systems. Materials Research Society Symposia Proceedings, 2009, 1194, 61.	0.1	1
147	Band offsets at interfaces of (100)InxGa1â^'xAs (0⩽x⩽0.53) with Al2O3 and HfO2. Microelectronic Engineering, 2009, 86, 1550-1553.	2.4	11
148	Molecular beam epitaxy passivation studies of Ge and III–V semiconductors for advanced CMOS. Microelectronic Engineering, 2009, 86, 1592-1595.	2.4	17
149	Interfaces of high-k dielectrics on GaAs: Their common features and the relationship with Fermi level pinning (Invited Paper). Microelectronic Engineering, 2009, 86, 1529-1535.	2.4	49
150	Electrical study of sulfur passivated In0.53Ga0.47As MOS capacitor and transistor with ALD Al2O3 as gate insulator. Microelectronic Engineering, 2009, 86, 1554-1557.	2.4	98
151	Temperature and frequency dependent electrical characterization of HfO2/InxGa1â^'xAs interfaces using capacitance-voltage and conductance methods. Applied Physics Letters, 2009, 94, .	3.3	96
152	Electrical Properties of III-V/Oxide Interfaces. ECS Transactions, 2009, 19, 375-386.	0.5	68
153	Enabling the high-performance InGaAs/Ge CMOS: a common gate stack solution. , 2009, , .		45
154	Energy barriers at interfaces between (100) InxGalâ^'xAsâ€^(â‰ x â‰ 6 .53) and atomic-layer deposited Al2O3 and HfO2. Applied Physics Letters, 2009, 94, .	3.3	24
155	Structural and Electrical Properties of HfO2/n-ln _x Ga _{1-x} As structures (x: 0,) Tj ETQq1 1 0	.784314 ı 0.5	rgBT /Overlo
156	GaAs on Ge for CMOS. Thin Solid Films, 2008, 517, 148-151.	1.8	29
157	Accurate carrier profiling of n-type GaAs junctions. Materials Science in Semiconductor Processing, 2008, 11, 259-266.	4.0	4
158	On the Correct Extraction of Interface Trap Density of MOS Devices With High-Mobility Semiconductor Substrates. IEEE Transactions on Electron Devices, 2008, 55, 547-556.	3.0	339
159	Alternative channel materials for MOS devices. , 2008, , .		2
160	Capacitance–Voltage Characterization of GaAs–Oxide Interfaces. Journal of the Electrochemical Society, 2008, 155, H945.	2.9	55
161	Capacitance-voltage characterization of GaAs–Al2O3 interfaces. Applied Physics Letters, 2008, 93, 183504.	3.3	109
162	Structure and interface bonding of GeO2â^•Geâ^•InO.15GaO.85As heterostructures. Applied Physics Letters, 2008, 93, 133504.	3.3	9

#	Article	IF	Citations
163	Energy barriers at interfaces of (100)GaAs with atomic layer deposited Al2O3 and HfO2. Applied Physics Letters, 2008, 93, .	3.3	30
164	Capacitance-Voltage (CV) Characterization of GaAs-Oxide Interfaces. ECS Transactions, 2008, 16, 507-519.	0.5	8
165	Atomic Layer Deposition of High-k Dielectric Layers on Ge and III-V MOS Channels. ECS Transactions, 2008, 16, 671-685.	0.5	9
166	Surface recombination velocity in GaAs and In0.15Ga0.85As thin films. Applied Physics Letters, 2007, 90, 134102.	3.3	16
167	Characteristic trapping lifetime and capacitance-voltage measurements of GaAs metal-oxide-semiconductor structures. Applied Physics Letters, 2007, 91, 133510.	3.3	94
168	Comparing GaAs and In0.15Ga0.85As as channel material for alternative substrate CMOS. Microelectronic Engineering, 2007, 84, 2154-2157.	2.4	5
169	Key Issues for the Development of a Ge CMOS Device in an Advanced IC Circuit. ECS Transactions, 2006, 3, 783-787.	0.5	0
170	Selective epitaxial growth of GaAs on Ge by MOCVD. Journal of Crystal Growth, 2006, 297, 204-210.	1.5	24
171	How Trace Analytical Techniques Contribute to the Research and Development of Ge and III/V Semiconductor Devices. ECS Transactions, 2006, 3, 173-181.	0.5	4
172	Selective Epitaxial Growth of GaAs on Ge Substrates with a SiO2 Pattern. ECS Transactions, 2006, 3, 585-591.	0.5	2
173	Low-temperature photoluminescence study of thin epitaxial GaAs films on Ge substrates. Journal of Applied Physics, 2006, 99, 093514.	2.5	64
174	Observation of a new non-equilibrium state in superconductors caused by sequential tunnelling. Europhysics Letters, 2004, 66, 265-271.	2.0	2
175	The role of phonons in establishing a non-equilibrium quasiparticle state in small gap multiple tunnelling superconducting tunnel junctions. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 2816-2819.	0.8	4
176	Energy-dependent kinetic model of photon absorption by superconducting tunnel junctions. Journal of Applied Physics, 2003, 94, 5854-5865.	2.5	7
177	Critical temperature of superconducting bilayers: Theory and experiment. Applied Physics Letters, 2002, 80, 2955-2957.	3.3	22
178	Modelling the energy gap in transition metal/aluminium bilayers. Physica C: Superconductivity and Its Applications, 2001, 350, 227-236.	1.2	8
179	Generalized proximity effect model in superconducting bi- and trilayer films. Journal of Applied Physics, 2001, 90, 355-364.	2.5	38
180	Local trap spectroscopy in superconducting tunnel junctions. Applied Physics Letters, 2001, 78, 3654-3656.	3.3	19

#	Article	lF	CITATIONS
18	Development of practical soft X-ray spectrometers. IEEE Transactions on Applied Superconductivity, 2001, 11, 828-831.	1.7	5
18	Surface Cleaning and Passivation of Chalcogenide Thin Films Using S(NH ₄) ₂ Chemical Treatment. Solid State Phenomena, 0, 219, 320-323.	0.3	1