Ivo A W Filot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7852814/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	On the Potential of Gallium- and Indium-Based Liquid Metal Membranes for Hydrogen Separation. Membranes, 2022, 12, 75.	1.4	3
2	Lateral Interactions of Dynamic Adlayer Structures from Artificial Neural Networks. Journal of Physical Chemistry C, 2022, 126, 5529-5540.	1.5	5
3	Promoted Fischer-Tropsch catalysts. , 2021, , .		Ο
4	Improved Pd/CeO ₂ Catalysts for Low-Temperature NO Reduction: Activation of CeO ₂ Lattice Oxygen by Fe Doping. ACS Catalysis, 2021, 11, 5614-5627.	5.5	44
5	Consequences of Amide Connectivity in the Supramolecular Polymerization of Porphyrins: Spectroscopic Observations Rationalized by Theoretical Modelling. Chemistry - A European Journal, 2021, 27, 9700-9707.	1.7	16
6	Atomistic Insights Into the Degradation of Inorganic Halide Perovskite CsPbI ₃ : A Reactive Force Field Molecular Dynamics Study. Journal of Physical Chemistry Letters, 2021, 12, 5519-5525.	2.1	31
7	Enumerating Active Sites on Metal Nanoparticles: Understanding the Size Dependence of Cobalt Particles for CO Dissociation. ACS Catalysis, 2021, 11, 8484-8492.	5.5	26
8	Ni–In Synergy in CO ₂ Hydrogenation to Methanol. ACS Catalysis, 2021, 11, 11371-11384.	5.5	79
9	A quantum-chemical study of the CO dissociation mechanism on low-index Miller planes of Ï´-Fe3C. Catalysis Today, 2020, 342, 152-160.	2.2	15
10	First-principles based microkinetic modeling of transient kinetics of CO hydrogenation on cobalt catalysts. Catalysis Today, 2020, 342, 131-141.	2.2	29
11	A theoretical study of the reverse waterâ€gas shift reaction on Ni(111) and Ni(311) surfaces. Canadian Journal of Chemical Engineering, 2020, 98, 740-748.	0.9	25
12	First-principles microkinetics simulations of electrochemical reduction of CO2 over Cu catalysts. Electrochimica Acta, 2020, 335, 135665.	2.6	32
13	Stability of heterogeneous single-atom catalysts: a scaling law mapping thermodynamics to kinetics. Npj Computational Materials, 2020, 6, .	3.5	44
14	The Vital Role of Step-Edge Sites for Both CO Activation and Chain Growth on Cobalt Fischer–Tropsch Catalysts Revealed through First-Principles-Based Microkinetic Modeling Including Lateral Interactions. ACS Catalysis, 2020, 10, 9376-9400.	5.5	37
15	Detailed chemomechanistic sensitivity study on the alkoxylation of fatty amines. International Journal of Chemical Kinetics, 2020, 52, 861-871.	1.0	1
16	Dynamics of gold clusters on ceria during CO oxidation. Journal of Catalysis, 2020, 392, 39-47.	3.1	20
17	Bioorthogonal Tetrazine Carbamate Cleavage by Highly Reactive <i>trans</i> -Cyclooctene. Journal of the American Chemical Society, 2020, 142, 10955-10963.	6.6	58
18	Design of Nonideal Eutectic Mixtures Based on Correlations with Molecular Properties. Journal of Physical Chemistry B, 2020, 124, 5209-5219.	1.2	16

Ivo A W Filot

#	Article	lF	CITATIONS
19	A theoretical study of CO oxidation and O2 activation for transition metal overlayers on SrTiO3 perovskite. Journal of Catalysis, 2020, 391, 229-240.	3.1	5
20	Supramolecular interactions between catalytic species allow rational control over reaction kinetics. Chemical Science, 2019, 10, 9115-9124.	3.7	6
21	Efficient Base-Metal NiMn/TiO ₂ Catalyst for CO ₂ Methanation. ACS Catalysis, 2019, 9, 7823-7839.	5.5	124
22	Coverage Effects in CO Dissociation on Metallic Cobalt Nanoparticles. ACS Catalysis, 2019, 9, 7365-7372.	5.5	37
23	Understanding the Impact of Defects on Catalytic CO Oxidation of LaFeO ₃ -Supported Rh, Pd, and Pt Single-Atom Catalysts. Journal of Physical Chemistry C, 2019, 123, 7290-7298.	1.5	36
24	Theoretical Approach To Predict the Stability of Supported Single-Atom Catalysts. ACS Catalysis, 2019, 9, 3289-3297.	5.5	101
25	Understanding carbon dioxide activation and carbon–carbon coupling over nickel. Nature Communications, 2019, 10, 5330.	5.8	124
26	Linear Activation Energy-Reaction Energy Relations for LaBO3 (B = Mn, Fe, Co, Ni) Supported Single-Atom Platinum Group Metal Catalysts for CO Oxidation. Journal of Physical Chemistry C, 2019, 123, 31130-31141.	1.5	12
27	A Linear Scaling Relation for CO Oxidation on CeO ₂ -Supported Pd. Journal of the American Chemical Society, 2018, 140, 4580-4587.	6.6	126
28	Mechanism of Carbon Monoxide Dissociation on a Cobalt Fischer-Tropsch Catalyst. ChemCatChem, 2018, 10, 5-5.	1.8	1
29	Optimum Particle Size for Gold-Catalyzed CO Oxidation. Journal of Physical Chemistry C, 2018, 122, 8327-8340.	1.5	45
30	Quantum-Chemical DFT Study of Direct and H- and C-Assisted CO Dissociation on the l‡-Fe ₅ C ₂ HÃgg Carbide. Journal of Physical Chemistry C, 2018, 122, 9929-9938.	1.5	34
31	An Active Alkali-Exchanged Faujasite Catalyst for <i>p</i> -Xylene Production via the One-Pot Diels–Alder Cycloaddition/Dehydration Reaction of 2,5-Dimethylfuran with Ethylene. ACS Catalysis, 2018, 8, 760-769.	5.5	54
32	Optimum Cu nanoparticle catalysts for CO2 hydrogenation towards methanol. Nano Energy, 2018, 43, 200-209.	8.2	133
33	Stable Pd-Doped Ceria Structures for CH ₄ Activation and CO Oxidation. ACS Catalysis, 2018, 8, 75-80.	5.5	111
34	Mechanism of Carbon Monoxide Dissociation on a Cobalt Fischer–Tropsch Catalyst. ChemCatChem, 2018, 10, 136-140.	1.8	39
35	Reversible Restructuring of Silver Particles during Ethylene Epoxidation. ACS Catalysis, 2018, 8, 11794-11800.	5.5	42
36	Potential enthalpic energy of water in oils exploited to control supramolecular structure. Nature, 2018, 558, 100-103.	13.7	123

IVO A W FILOT

#	Article	IF	CITATIONS
37	Transition metal doping of Pd(1 1 1) for the NO + CO reaction. Journal of Catalysis, 2018, 363, 154-163.	3.1	34
38	Highly Active and Stable CH ₄ Oxidation by Substitution of Ce ⁴⁺ by Two Pd ²⁺ lons in CeO ₂ (111). ACS Catalysis, 2018, 8, 6552-6559.	5.5	90
39	CO oxidation on Rh-doped hexadecagold clusters. Catalysis Science and Technology, 2017, 7, 75-83.	2.1	15
40	Unravelling the Pathway Complexity in Conformationally Flexible <i>N</i> entered Triarylamine Trisamides. Chemistry - A European Journal, 2017, 23, 6103-6110.	1.7	64
41	Theoretical Study of Ripening Mechanisms of Pd Clusters on Ceria. Chemistry of Materials, 2017, 29, 9456-9462.	3.2	67
42	Mechanism of Cobalt-Catalyzed CO Hydrogenation: 1. Methanation. ACS Catalysis, 2017, 7, 8050-8060.	5.5	53
43	Mechanism of Cobalt-Catalyzed CO Hydrogenation: 2. Fischer–Tropsch Synthesis. ACS Catalysis, 2017, 7, 8061-8071.	5.5	94
44	Kinetic aspects of chain growth in Fischer–Tropsch synthesis. Faraday Discussions, 2017, 197, 153-164.	1.6	18
45	A quantum-chemical DFT study of CO dissociation on Fe-promoted stepped Rh surfaces. Catalysis Today, 2016, 275, 111-118.	2.2	12
46	Charge Transport over the Defective CeO ₂ (111) Surface. Chemistry of Materials, 2016, 28, 5652-5658.	3.2	52
47	Identification of step-edge sites on Rh nanoparticles for facile CO dissociation. Catalysis Communications, 2016, 77, 5-8.	1.6	18
48	Microkinetic Modeling of the Oxygen Reduction Reaction at the Pt(111)/Gas Interface. Catalysis Letters, 2015, 145, 451-457.	1.4	12
49	First-Principles-Based Microkinetics Simulations of Synthesis Gas Conversion on a Stepped Rhodium Surface. ACS Catalysis, 2015, 5, 5453-5467.	5.5	124
50	Development of a Benzimidazoleâ€Derived Bidentate P,Nâ€Ligand for Enantioselective Iridiumâ€Catalyzed Hydrogenations. European Journal of Organic Chemistry, 2014, 2014, 350-362.	1.2	11
51	Correlating Fischer–Tropsch activity to Ru nanoparticle surface structure as probed by high-energy X-ray diffraction. Chemical Communications, 2014, 50, 6005-6008.	2.2	40
52	The Optimally Performing Fischer–Tropsch Catalyst. Angewandte Chemie - International Edition, 2014, 53, 12746-12750.	7.2	208
53	The Optimally Performing Fischer–Tropsch Catalyst. Angewandte Chemie, 2014, 126, 12960-12964.	1.6	35
54	Reactivity of CO on Carbon-Covered Cobalt Surfaces in Fischer–Tropsch Synthesis. Journal of Physical Chemistry C, 2014, 118, 5317-5327.	1.5	42

IVO A W FILOT

#	Article	IF	CITATIONS
55	Innentitelbild: The Optimally Performing Fischer–Tropsch Catalyst (Angew. Chem. 47/2014). Angewandte Chemie, 2014, 126, 12856-12856.	1.6	3
56	Conformational Analysis of Chiral Supramolecular Aggregates: Modeling the Subtle Difference between Hydrogen and Deuterium. Journal of the American Chemical Society, 2013, 135, 16497-16506.	6.6	31
57	Catalytic properties of extraframework iron-containing species in ZSM-5 for N2O decomposition. Journal of Catalysis, 2013, 308, 386-397.	3.1	43
58	Mechanism and microkinetics of the Fischer–Tropsch reaction. Physical Chemistry Chemical Physics, 2013, 15, 17038.	1.3	233
59	Microkinetics of steam methane reforming on platinum and rhodium metal surfaces. Journal of Catalysis, 2013, 297, 227-235.	3.1	43
60	Self-healing systems based on disulfide–thiol exchange reactions. Polymer Chemistry, 2013, 4, 4955.	1.9	383
61	The origin of isotope-induced helical-sense bias in supramolecular polymers of benzene-1,3,5-tricarboxamides. Physical Chemistry Chemical Physics, 2012, 14, 13997.	1.3	3
62	Cooperative Two-Component Self-Assembly of Mono- and Ditopic Monomers. Macromolecules, 2011, 44, 6581-6587.	2.2	35
63	Size and Topological Effects of Rhodium Surfaces, Clusters and Nanoparticles on the Dissociation of CO. Journal of Physical Chemistry C, 2011, 115, 14204-14212.	1.5	48
64	Dynamic Supramolecular Polymers Based on Benzeneâ€1,3,5â€tricarboxamides: The Influence of Amide Connectivity on Aggregate Stability and Amplification of Chirality. Chemistry - A European Journal, 2010, 16, 810-821.	1.7	93
65	Understanding Cooperativity in Hydrogen-Bond-Induced Supramolecular Polymerization: A Density Functional Theory Study. Journal of Physical Chemistry B, 2010, 114, 13667-13674.	1.2	119
66	Tuning the Extent of Chiral Amplification by Temperature in a Dynamic Supramolecular Polymer. Journal of the American Chemical Society, 2010, 132, 611-619.	6.6	165