## Jean François Colin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7851760/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Original pathway to selectively precipitate cobalt from an old battery solution thanks to imidazole<br>linker. Separation and Purification Technology, 2022, 281, 119890.                                                                                               | 7.9  | 1         |
| 2  | Lithium-Rich Rock Salt Type Sulfides-Selenides (Li2TiSexS3â^'x): High Energy Cathode Materials for<br>Lithium-Ion Batteries. Materials, 2022, 15, 3037.                                                                                                                 | 2.9  | 2         |
| 3  | Combining <i>operando</i> X-ray experiments and modelling to understand the heterogeneous<br>lithiation of graphite electrodes. Journal of Materials Chemistry A, 2021, 9, 4281-4290.                                                                                   | 10.3 | 9         |
| 4  | Influence of Al and F surface modifications on the sudden death effect of Si-Gr/Li1.2Ni0.2Mn0.6O2<br>Li-Ion cells. Electrochimica Acta, 2021, 400, 139419.                                                                                                              | 5.2  | 5         |
| 5  | Stabilization of Li-Rich Disordered Rocksalt Oxyfluoride Cathodes by Particle Surface Modification.<br>ACS Applied Energy Materials, 2020, 3, 5937-5948.                                                                                                                | 5.1  | 19        |
| 6  | Influence of Electrolyte Additives on the Degradation of Li <sub>2</sub> VO <sub>2</sub> F Li-Rich<br>Cathodes. Journal of Physical Chemistry C, 2020, 124, 12956-12967.                                                                                                | 3.1  | 8         |
| 7  | Submicronic LiNi1/3Mn1/3Co1/3O2 synthesized by co-precipitation for lithium ion batteries - Tailoring a classic process for enhanced energy and power density. Journal of Power Sources, 2018, 396, 527-532.                                                            | 7.8  | 13        |
| 8  | Environmental Screening of Electrode Materials for a Rechargeable Aluminum Battery with an AlCl3/EMIMCl Electrolyte. Materials, 2018, 11, 936.                                                                                                                          | 2.9  | 19        |
| 9  | Multiscale characterization of a lithium/sulfur battery by coupling operando X-ray tomography and spatially-resolved diffraction. Scientific Reports, 2017, 7, 2755.                                                                                                    | 3.3  | 47        |
| 10 | Li-Rich Mn/Ni Layered Oxide as Electrode Material for Lithium Batteries: A <sup>7</sup> Li MAS NMR<br>Study Revealing Segregation into (Nanoscale) Domains with Highly Different Electrochemical<br>Behaviors. Journal of Physical Chemistry C, 2016, 120, 19049-19063. | 3.1  | 13        |
| 11 | Electrochemical performances and gassing behavior of high surface area titanium niobium oxides.<br>Journal of Materials Chemistry A, 2016, 4, 11531-11541.                                                                                                              | 10.3 | 37        |
| 12 | Lithium/Sulfur Batteries Upon Cycling: Structural Modifications and Species Quantification by In Situ<br>and Operando Xâ€Ray Diffraction Spectroscopy. Advanced Energy Materials, 2015, 5, 1500165.                                                                     | 19.5 | 148       |
| 13 | Synthesis and Characterization of the LiMnBO3–LiCoBO3 Solid Solution and Its Use as a Lithium-Ion<br>Cathode Material. Inorganic Chemistry, 2015, 54, 5273-5279.                                                                                                        | 4.0  | 22        |
| 14 | Role of the composition of lithium-rich layered oxide materials on the voltage decay. Journal of<br>Power Sources, 2015, 280, 687-694.                                                                                                                                  | 7.8  | 40        |
| 15 | Synthesis and electrochemical properties of Li(Fe0.5Co0.5)BO3. RSC Advances, 2015, 5, 72801-72804.                                                                                                                                                                      | 3.6  | 8         |
| 16 | First Evidence of Manganese–Nickel Segregation and Densification upon Cycling in Li-Rich Layered<br>Oxides for Lithium Batteries. Nano Letters, 2013, 13, 3857-3863.                                                                                                    | 9.1  | 411       |
| 17 | Study of lithiation mechanisms in silicon electrodes by Auger Electron Spectroscopy. Journal of<br>Materials Chemistry A, 2013, 1, 4956.                                                                                                                                | 10.3 | 62        |
| 18 | New insight into the working mechanism of lithium–sulfur batteries: in situ and operando X-ray diffraction characterization. Chemical Communications, 2013, 49, 7899.                                                                                                   | 4.1  | 201       |

Jean François Colin

| #  | Article                                                                                                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Circular in situneutron powder diffraction cell for study of reaction mechanism in electrode materials for Li-ion batteries. RSC Advances, 2013, 3, 757-763.                                                                                                                                                                                  | 3.6 | 35        |
| 20 | Evolutions of Li <sub>1.2</sub> Mn <sub>0.61</sub> Ni <sub>0.18</sub> Mg <sub>0.01</sub> O <sub>2</sub><br>during the Initial Charge/Discharge Cycle Studied by Advanced Electron Microscopy. Chemistry of<br>Materials, 2012, 24, 3558-3566.                                                                                                 | 6.7 | 226       |
| 21 | In situ investigations of a Li-rich Mn–Ni layered oxide for Li-ion batteries. Journal of Materials<br>Chemistry, 2012, 22, 11316.                                                                                                                                                                                                             | 6.7 | 73        |
| 22 | A structural and electrochemical study of Ni0.5TiOPO4 synthesized via modified solution route.<br>Electrochimica Acta, 2012, 77, 244-249.                                                                                                                                                                                                     | 5.2 | 12        |
| 23 | In situ neutron diffraction study of Li insertion in Li4Ti5O12. Electrochemistry Communications, 2010, 12, 804-807.                                                                                                                                                                                                                           | 4.7 | 65        |
| 24 | In situ X-ray diffraction study of different graphites in a propylene carbonate based electrolyte at very positive potentials. Electrochimica Acta, 2010, 55, 4964-4969.                                                                                                                                                                      | 5.2 | 36        |
| 25 | Two caesium vanadium hydrogenphosphates with tunnelled structures:<br>Cs <sub>2</sub> V <sub>2</sub> O <sub>3</sub> (PO <sub>4</sub> )(HPO <sub>4</sub> ) and<br>Cs <sub>2</sub> [(VO) <sub>3</sub> (HPO <sub>4</sub> )(Kesub>2)]·H <sub>2</sub> O.<br>Acta Crystallographica Section C: Crystal Structure Communications. 2010. 66. i12-i15. | 0.4 | 2         |