
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/785169/publications.pdf Version: 2024-02-01

<u>CIAUDIA RÃ1/CHEL</u>

#	Article	IF	CITATIONS
1	The C-terminus of a diatom plant-like cryptochrome influences the FAD redox state and binding of interaction partners. Journal of Experimental Botany, 2022, 73, 1934-1948.	4.8	3
2	A kaleidoscope of photosynthetic antenna proteins and their emerging roles. Plant Physiology, 2022, 189, 1204-1219.	4.8	14
3	Photosynthetic Light Reactions in Diatoms. II. The Dynamic Regulation of the Various Light Reactions. , 2022, , 423-464.		9
4	Photosynthetic Light Reactions in Diatoms. I. The Lipids and Light-Harvesting Complexes of the Thylakoid Membrane. , 2022, , 397-422.		4
5	Heterologous expression of HUP1 glucose transporter enables low-light mediated growth on glucose in Phaeodactylum tricornutum. Algal Research, 2022, 64, 102719.	4.6	5
6	Structure-based model of fucoxanthin–chlorophyll protein complex: Calculations of chlorophyll electronic couplings. Journal of Chemical Physics, 2022, 156, .	3.0	7
7	Photoacclimation impacts the molecular features of photosystem supercomplexes in the centric diatom Thalassiosira pseudonana. Biochimica Et Biophysica Acta - Bioenergetics, 2022, 1863, 148589.	1.0	5
8	A distinctive pathway for triplet-triplet energy transfer photoprotection in fucoxanthin chlorophyll-binding proteins from Cyclotella meneghiniana. Biochimica Et Biophysica Acta - Bioenergetics, 2021, 1862, 148310.	1.0	8
9	Confronting FCP structure with ultrafast spectroscopy data: evidence for structural variations. Physical Chemistry Chemical Physics, 2021, 23, 806-821.	2.8	13
10	Revealing the architecture of the photosynthetic apparatus in the diatom <i>Thalassiosira pseudonana</i> . Plant Physiology, 2021, 186, 2124-2136.	4.8	17
11	Light harvesting complexes in chlorophyll c-containing algae. Biochimica Et Biophysica Acta - Bioenergetics, 2020, 1861, 148027.	1.0	56
12	Revealing vibronic coupling in chlorophyll c1 by polarization-controlled 2D electronic spectroscopy. Chemical Physics, 2020, 530, 110643.	1.9	19
13	Single cell-inductively coupled plasma-time of flight-mass spectrometry approach for ecotoxicological testing. Algal Research, 2020, 49, 101964.	4.6	26
14	Specific Lhc Proteins Are Bound to PSI or PSII Supercomplexes in the Diatom <i>Thalassiosira pseudonana</i> . Plant Physiology, 2020, 183, 67-79.	4.8	18
15	Light-Harvesting Complexes of Diatoms: Fucoxanthin-Chlorophyll Proteins. Advances in Photosynthesis and Respiration, 2020, , 441-457.	1.0	5
16	Comment on "Acidic pH-Induced Modification of Energy Transfer in Diatom Fucoxanthin Chlorophyll <i>a</i> / <i>c</i> -Binding Proteins― Journal of Physical Chemistry B, 2020, 124, 10585-10587.	2.6	0
17	How diatoms harvest light. Science, 2019, 365, 447-448.	12.6	11
18	Multi-endpoint toxicological assessment of polystyrene nano- and microparticles in different biological models in vitro. Toxicology in Vitro, 2019, 61, 104610.	2.4	172

#	Article	IF	CITATIONS
19	Development of an automated on-line purification HPLC single cell-ICP-MS approach for fast diatom analysis. Analytica Chimica Acta, 2019, 1077, 87-94.	5.4	19
20	Evolution and function of light-harvesting antenna in oxygenic photosynthesis. Advances in Botanical Research, 2019, , 247-293.	1.1	10
21	Fucoxanthin-Chlorophyll Protein Complexes of the Centric Diatom <i>Cyclotella Meneghiniana</i> Differ in Lhcx1 and Lhcx6_1 Content. Plant Physiology, 2019, 179, 1779-1795.	4.8	24
22	Knock-Down of a <i>ligIV</i> Homologue Enables DNA Integration <i>via</i> Homologous Recombination in the Marine Diatom <i>Phaeodactylum tricornutum</i> . ACS Synthetic Biology, 2019, 8, 57-69.	3.8	13
23	Cation-dependent changes in the thylakoid membrane appression of the diatom Thalassiosira pseudonana. Biochimica Et Biophysica Acta - Bioenergetics, 2019, 1860, 41-51.	1.0	9
24	The structure of FCPb, a light-harvesting complex in the diatom Cyclotella meneghiniana. Photosynthesis Research, 2018, 135, 203-211.	2.9	22
25	Energy dissipation mechanisms in the FCPb light-harvesting complex of the diatom Cyclotella meneghiniana. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 1151-1160.	1.0	16
26	Drought-Responsive Gene Expression in Sun and Shade Plants of Haberlea rhodopensis Under Controlled Environment. Plant Molecular Biology Reporter, 2017, 35, 313-322.	1.8	7
27	Structure and Biosynthesis of Isatropolones, Bioactive Amineâ€Scavenging Fluorescent Natural Products from <i>Streptomyces</i> â€Gö66. Angewandte Chemie - International Edition, 2017, 56, 4945-4949.	13.8	22
28	The Influence of a Cryptochrome on the Gene Expression Profile in the Diatom Phaeodactylum tricornutum under Blue Light and in Darkness. Plant and Cell Physiology, 2017, 58, 1914-1923.	3.1	14
29	The cryptochrome—photolyase protein family in diatoms. Journal of Plant Physiology, 2017, 217, 15-19.	3.5	26
30	How reduced excitonic coupling enhances light harvesting in the main photosynthetic antennae of diatoms. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E11063-E11071.	7.1	26
31	Functional proteomics of light-harvesting complex proteins under varying light-conditions in diatoms. Journal of Plant Physiology, 2017, 217, 38-43.	3.5	9
32	Involvement of the Lhcx protein Fcp6 of the diatom Cyclotella meneghiniana in the macro-organisation and structural flexibility of thylakoid membranes. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 1373-1379.	1.0	28
33	"Super-quenching―state protects Symbiodinium from thermal stress — Implications for coral bleaching. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 840-847.	1.0	63
34	Identification of genes coding for functional zeaxanthin epoxidases in the diatom Phaeodactylum tricornutum. Journal of Plant Physiology, 2016, 192, 64-70.	3.5	36
35	Identification of a triacylglycerol lipase in the diatom Phaeodactylum tricornutum. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 239-248.	2.4	60
36	Limitations in the biosynthesis of fucoxanthin as targets for genetic engineering in Phaeodactylum tricornutum. Journal of Applied Phycology, 2016, 28, 123-129.	2.8	84

#	Article	IF	CITATIONS
37	Isolation of Plant Photosystem II Complexes by Fractional Solubilization. Frontiers in Plant Science, 2015, 6, 1100.	3.6	14
38	Production of ketocarotenoids in tobacco alters the photosynthetic efficiency by reducing photosystem II supercomplex and LHCII trimer stability. Photosynthesis Research, 2015, 123, 157-165.	2.9	12
39	Coherence and population dynamics of chlorophyll excitations in FCP complex: Two-dimensional spectroscopy study. Journal of Chemical Physics, 2015, 142, 212414.	3.0	30
40	Mapping energy transfer channels in fucoxanthin–chlorophyll protein complex. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 241-247.	1.0	59
41	Evolution and function of light harvesting proteins. Journal of Plant Physiology, 2015, 172, 62-75.	3.5	126
42	Fucoxanthin-Chlorophyll-Proteins and Non-Photochemical Fluorescence Quenching of Diatoms. Advances in Photosynthesis and Respiration, 2014, , 259-275.	1.0	13
43	Limits to physiological plasticity of the coral Pocillopora verrucosa from the central Red Sea. Coral Reefs, 2014, 33, 1115-1129.	2.2	56
44	Structure and Functional Heterogeneity of Fucoxanthin-Chlorophyll Proteins in Diatoms. Advances in Photosynthesis and Respiration, 2014, , 21-37.	1.0	24
45	Stark fluorescence spectroscopy reveals two emitting sites in the dissipative state of FCP antennas. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 193-200.	1.0	26
46	Probing the carotenoid content of intact Cyclotella cells by resonance Raman spectroscopy. Photosynthesis Research, 2014, 119, 273-281.	2.9	35
47	A novel cryptochrome in the diatom <i><scp>P</scp>haeodactylumÂtricornutum</i> influences the regulation of lightâ€harvesting protein levels. FEBS Journal, 2014, 281, 2299-2311.	4.7	52
48	Exploring the mechanism(s) of energy dissipation in the light harvesting complex of the photosynthetic algae Cyclotella meneghiniana. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 1507-1513.	1.0	17
49	Disentangling two non-photochemical quenching processes in Cyclotella meneghiniana by spectrally-resolved picosecond fluorescence at 77K. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 899-907.	1.0	41
50	Pigment Organization Effects on Energy Transfer and <i>Chl a</i> Emission Imaged in the Diatoms <i>C. meneghiniana</i> and <i>P. tricornutum</i> In Vivo: A Confocal Laser Scanning Fluorescence (CLSF) Microscopy and Spectroscopy Study. Journal of Physical Chemistry B, 2013, 117, 11272-11281.	2.6	8
51	Triplet–triplet energy transfer in fucoxanthin-chlorophyll protein from diatom Cyclotella meneghiniana: Insights into the structure of the complex. Biochimica Et Biophysica Acta - Bioenergetics, 2013, 1827, 1226-1234.	1.0	28
52	Isolation of monomeric photosystem II that retains the subunit PsbS. Photosynthesis Research, 2013, 118, 199-207.	2.9	19
53	Identification of several sub-populations in the pool of light harvesting proteins in the pennate diatom Phaeodactylum tricornutum. Biochimica Et Biophysica Acta - Bioenergetics, 2013, 1827, 303-310.	1.0	76
54	Ultrafast Energy Transfer from Chlorophyll <i>c</i> ₂ to Chlorophyll <i>a</i> in Fucoxanthin–Chlorophyll Protein Complex. Journal of Physical Chemistry Letters, 2013, 4, 3590-3595.	4.6	33

#	Article	IF	CITATIONS
55	Biosynthesis of fucoxanthin and diadinoxanthin and function of initial pathway genes in Phaeodactylum tricornutum. Journal of Experimental Botany, 2012, 63, 5607-5612.	4.8	101
56	Properties of photosystem I antenna protein complexes of the diatom Cyclotella meneghiniana. Journal of Experimental Botany, 2012, 63, 3673-3681.	4.8	33
57	Chlorophyll triplet quenching by fucoxanthin in the fucoxanthin–chlorophyll protein from the diatom Cyclotella meneghiniana. Biochemical and Biophysical Research Communications, 2012, 427, 637-641.	2.1	32
58	Factors determining the fluorescence yield of fucoxanthin-chlorophyll complexes (FCP) involved in non-photochemical quenching in diatoms. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 1044-1052.	1.0	68
59	INFLUENCE OF DIFFERENT LIGHT INTENSITIES AND DIFFERENT IRON NUTRITION ON THE PHOTOSYNTHETIC APPARATUS IN THE DIATOM <i>CYCLOTELLA MENEGHINIANA</i> (BACILLARIOPHYCEAE) ¹ . Journal of Phycology, 2011, 47, 1266-1273.	2.3	32
60	Desiccation of the resurrection plant Haberlea rhodopensis at high temperature. Photosynthesis Research, 2011, 108, 5-13.	2.9	30
61	Effect of gold nanoparticles on adipogenic differentiation of human mesenchymal stem cells. Journal of Nanoparticle Research, 2011, 13, 6789-6803.	1.9	22
62	Temperature and salinity tolerances of geographically separated Phaeodactylum tricornutum Böhlin strains: maximum quantum yield of primary photochemistry, pigmentation, proline content and growth. Botanica Marina, 2011, 54, .	1.2	20
63	Oligomerization and pigmentation dependent excitation energy transfer in fucoxanthin–chlorophyll proteins. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 543-549.	1.0	68
64	Pigment organization in fucoxanthin chlorophyll a/c2 proteins (FCP) based on resonance Raman spectroscopy and sequence analysis. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 1647-1656.	1.0	86
65	The excitation energy transfer in the trimeric fucoxanthin–chlorophyll protein from Cyclotella meneghiniana analyzed by polarized transient absorption spectroscopy. Chemical Physics, 2010, 373, 104-109.	1.9	40
66	Characterization of a trimeric light-harvesting complex in the diatom Phaeodactylum tricornutum built of FcpA and FcpE proteins. Journal of Experimental Botany, 2010, 61, 3079-3087.	4.8	44
67	Human serum albumin nanoparticles modified with apolipoprotein A-I cross the blood-brain barrier and enter the rodent brain. Journal of Drug Targeting, 2010, 18, 842-848.	4.4	105
68	Coherent effects in the carbonyl containing carotenoid fucoxanthin. , 2010, , .		0
69	Albumin nanoparticles targeted with Apo E enter the CNS by transcytosis and are delivered to neurones. Journal of Controlled Release, 2009, 137, 78-86.	9.9	377
70	Identification of a specific fucoxanthin-chlorophyll protein in the light harvesting complex of photosystem I in the diatom Cyclotella meneghiniana. Biochimica Et Biophysica Acta - Bioenergetics, 2009, 1787, 905-912.	1.0	86
71	Carotenoid Structures and Environments in Trimeric and Oligomeric Fucoxanthin Chlorophyll a/c ₂ Proteins from Resonance Raman Spectroscopy. Journal of Physical Chemistry B, 2009, 113, 12565-12574.	2.6	89
72	Changes in some thylakoid membrane proteins and pigments upon desiccation of the resurrection plant Haberlea rhodopensis. Journal of Plant Physiology, 2009, 166, 1520-1528.	3.5	46

#	Article	IF	CITATIONS
73	Light Harvesting, Energy Transfer and Photoprotection in the Fucoxanthin-Chlorophyll Proteins of Cyclotella meneghiniana. Springer Series in Chemical Physics, 2009, , 577-579.	0.2	1
74	The fluorescence yield of the trimeric fucoxanthin–chlorophyll–protein FCPa in the diatom Cyclotella meneghiniana is dependent on the amount of bound diatoxanthin. Photosynthesis Research, 2008, 95, 229-235.	2.9	83
75	Probing the Organization of Photosystem II in Photosynthetic Membranes by Atomic Force Microscopy. Biochemistry, 2008, 47, 431-440.	2.5	71
76	Isolation of highly active photosystem II core complexes with a His-tagged Cyt b559 subunit from transplastomic tobacco plants. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, 1501-1509.	1.0	23
77	The Charge-Transfer Properties of the S ₂ State of Fucoxanthin in Solution and in Fucoxanthin Chlorophyll-a/c ₂ Protein (FCP) Based on Stark Spectroscopy and Molecular-Orbital Theory. Journal of Physical Chemistry B, 2008, 112, 11838-11853.	2.6	70
78	Electron Crystallography in Photosynthesis Research. Advances in Photosynthesis and Respiration, 2008, , 125-150.	1.0	3
79	Investigating The Organization Of Photosystem Ii In Spinach Photosynthetic Membranes By Atomic Force Microscopy. , 2008, , 779-782.		0
80	The monomeric photosystem I-complex of the diatom Phaeodactylum tricornutum binds specific fucoxanthin chlorophyll proteins (FCPs) as light-harvesting complexes. Biochimica Et Biophysica Acta - Bioenergetics, 2007, 1767, 1428-1435.	1.0	81
81	Subunit Composition and Pigmentation of Fucoxanthinâ^'Chlorophyll Proteins in Diatoms:Â Evidence for a Subunit Involved in Diadinoxanthin and Diatoxanthin Bindingâ€. Biochemistry, 2006, 45, 13046-13053.	2.5	131
82	The Regulation of Carbon and Nutrient Assimilation in Diatoms is Significantly Different from Green Algae. Protist, 2006, 157, 91-124.	1.5	239
83	Structural differences in the inner part of Photosystem II between higher plants and cyanobacteria. Photosynthesis Research, 2005, 85, 3-13.	2.9	20
84	Spectroscopic Characterization of the Excitation Energy Transfer in the Fucoxanthin–Chlorophyll Protein of Diatoms. Photosynthesis Research, 2005, 86, 241-250.	2.9	151
85	Transversal and Lateral Exciton Energy Transfer in Grana Thylakoids of Spinach. Biochemistry, 2004, 43, 14508-14516.	2.5	48
86	Fucoxanthin-Chlorophyll Proteins in Diatoms:Â 18 and 19 kDa Subunits Assemble into Different Oligomeric Statesâ€. Biochemistry, 2003, 42, 13027-13034.	2.5	159
87	Localisation of the PsbH subunit in photosystem II: a new approach using labelling of his-tags with a Ni2+-NTA gold cluster and single particle analysis. Journal of Molecular Biology, 2001, 312, 371-379.	4.2	66
88	Three-dimensional Structure of Chlamydomonas reinhardtii and Synechococcus elongatus Photosystem II Complexes Allows for Comparison of Their Oxygen-evolving Complex Organization. Journal of Biological Chemistry, 2000, 275, 27940-27946.	3.4	109
89	Crystallisation of CP43, a Chlorophyll Binding Protein of Photosystem II: An Electron Microscopy Analysis of Molecular Packing. Journal of Structural Biology, 2000, 131, 181-186.	2.8	7
90	Organization of the pigment molecules in the thylakoids and the chlorophyll a/c light-harvesting complex of a xanthophyte alga, Pleurochloris meiringensis. A linear dichroism study. Journal of Photochemistry and Photobiology B: Biology, 1998, 44, 199-204.	3.8	3

#	Article	IF	CITATIONS
91	Isolation and characterization of a photosystem I-associated antenna (LHC I) and a photosystem I—core complex from the chlorophyll c-containing alga Pleurochloris meiringensis (Xanthophyceae). Journal of Photochemistry and Photobiology B: Biology, 1993, 20, 87-93.	3.8	31
92	Changes in yield ofin-vivo fluorescence of chlorophyll a as a tool for selective herbicide monitoring. Journal of Applied Phycology, 1993, 5, 505-516.	2.8	75
93	A new fluorometric device to measure thein vivochlorophyllafluorescence yield in microalgae and its use as a herbicide monitor. European Journal of Phycology, 1993, 28, 247-252.	2.0	22
94	The molecular organization of chlorophyll-protein complexes in the Xanthophycean alga Pleurochloris meiringensis. Biochimica Et Biophysica Acta - Bioenergetics, 1988, 934, 220-226.	1.0	12